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Abstract
& Keymessage This work analyses the rate of recovery of the spectral signal from clearcut areas of coppiceMediterranean
forests using Landsat Time Series (LTS). The analysis revealed a more rapid rate of spectral signal recovery than what
was found in previous investigations in boreal and temperate forests.
& Context The rate of post-disturbance vegetation recovery is an important component of forest dynamics.
& Aims In this study, we analyze the recovery of the spectral signal from forest clearcut areas in Mediterranean conditions when
the coppice system of forest management is applied.
& Methods We used LTS surface reflectance data (1999–2015).We generated an annual reference database of clearcuts using visual
interpretation and local forest inventory data, and then derived the Normalized Difference Vegetation Index (NDVI) and Normalized
Burn Ratio (NBR) spectral trajectories for these clearcuts. From these spectral trajectories, we calculated the Years to Recovery or Y2R,
the number of years it takes for a pixel to return towithin a specified threshold (i.e., 70%, 80%, 90%, 100%) of its pre-disturbance value.
Spectral recovery rates were then corroborated using measures of canopy height derived from airborne laser scanning (ALS) data.
& Results The coppice system is associated with rapid recovery rates when compared to rates of recovery from seeds or seedlings in
temperate and boreal forest conditions. We found that the Y2R derived from the spectral trajectories of post-clearcut NBR and NDVI
provided similar characterizations of rapid recovery for the coppice system of forest management applied in our study area. The ALS
measures of canopy height indicated that the Y2R metric accurately captured the rapid regeneration of coppice systems.
& Conclusion The rapid rate of spectral recovery associated with the coppice system is 2–4 years, which contrasts with values
reported in boreal and temperate forest environments, where spectral recovery was attained in approximately 10 years. NBR is an
effective index for assessing rapid recovery in this forest system.
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1 Introduction

Forests cover 30.6% of the world terrestrial surface (FAO
2015). In Europe, forest area continues to increase with forests
now accounting for 33% of the total land area (FOREST
EUROPE 2015). The importance of forest ecosystems is re-
lated to their capacity to provide a vast array of ecosystem
goods and services, which may be altered by climate and land
use changes. Within Europe, Mediterranean forests are more
potentially at risk of suffering the impacts of climate change
because of drought and augmented forest fires (Schröter et al.
2005).

Since the direct economic value of European forests is pri-
marily related to wood production, logging is both one of the
main methods for producing ecosystem services, as well as
one of the main disturbances to these ecosystems (Seidl et al.
2011), further underpinning the need to manage forest ecosys-
tems sustainably. The main indicator for measuring the sus-
tainability of forest management has conventionally been the
ratio between increments and fellings. Nowadays, just as in
the last century, growth increments are estimated by National
Forest Inventories (NFI), usually comparing repeated field
measures in permanent plots on the ground (Tomter et al.
2016; Chirici et al. 2020a).

Traditionally, NFI programs monitor the forested land
based on field data collected over a permanent network of
sample plots. Although these plots are visited repeatedly
through time, there are large temporal gaps between
remeasurements (e.g., 5–10 years) such that many forest can-
opy disturbances go undetected (Schroeder et al. 2014). For
this reason, information on felling is instead estimated from
different sources such as reports provided by the local author-
ities responsible for authorizing such activities. The shortcom-
ings of these systems, which do not fully account for all wood
removals at the national level, have been identified at least for
Germany (Jochem et al. 2015), Canada (White et al. 2017),
and Italy (Chirici et al. 2011). Forest fellings, especially those
resulting from clearcutting, are clearly visible from satellite
images and readily detected with automated algorithms, par-
ticularly when time series or multitemporal data are used, and
when the spatial resolution of the data is compatible with the
size of the harvested areas (Schroeder et al. 2007).

Dating back to 1972, Landsat data constitute the longest
record of medium-resolution satellite imagery that have been
demonstrated suitable for detecting forest harvesting and post-
harvest vegetation recovery (Kennedy et al. 2010;
Pflugmacher et al. 2012; Shimizu et al. 2016). The analysis
of Landsat Time Series (LTS) increased dramatically with the
change to a free and open access data policy (Woodcock et al.
2008), and applications of LTS to characterize forest distur-
bance and recovery have been regional (Griffiths et al. 2014),
national (White et al. 2017), and global (Hansen and Loveland
2012). Moreover, the full potential of LTS for forest

monitoring has been extensively reviewed (e.g., Frolking
et al. 2009; Banskota et al. 2014).

Studies for the characterizations of regenerating forests
with LTS analysis have been conducted primarily in temperate
(Kennedy et al. 2007, Kennedy et al. 2012) and boreal forest
environments (Olsson 2009), and only a few studies have
focused on post-harvest recovery (Schroeder et al. 2007;
White et al. 2017; White et al. 2018; White et al. 2019). In
Schroeder et al. (2007), trajectories of Landsat spectral signals
after clearcut in Douglas fir forests in Oregon (USA) were
analyzed. The authors classified as “fast recovery” those clas-
ses where the spectral behavior was completely recovered
after 12–14 years from the time of clearcut, also highlighting
that the rates of forest regrowth after disturbance in western
Oregon can be highly variable. Cohen et al. (2010) confirmed
for the same region and forest type an average recovery time
(time for recovering the same spectral behavior as before har-
vesting) of 10.6 years. White et al. (2017) analyzed the entire
forested ecosystems of Canada for the period 1985–2010 and
found that on average, it took 6.6 years (with σ of 3.9 years)
for a forest harvested pixel to reach 80% of its pre-disturbance
spectral behavior. InWhite et al. (2018), a similar analysis was
carried out in boreal forests of southern Finland, with airborne
laser scanning (ALS) data used to define recovery, determined
as benchmark thresholds for canopy cover (> 10%) and tree
height (> 5 m). White et al. (2018) found that < 5% of harvest-
ed forests recovered 100% of their pre-disturbance spectral
properties in less than 10 years and achieved the ALS bench-
mark thresholds for cover and height. By comparison, 30% of
pixels recovered in 10–17 years, and 28% recovered in >
17 years and achieved the ALS benchmarks. However, 27%
of pixels did not recover 100% of their pre-disturbance spec-
tral properties by the end of the time series, although these
pixels did attain the ALS benchmark values for cover and
height. When the authors applied an 80% spectral threshold
instead of 100% threshold to determine spectral recovery, es-
timates of time to recovery were more realistic: 51% of pixels
spectrally recovered in < 5 years and met the ALS bench-
marks, with 36% of pixels recovering in 10–17 years, and
2% in > 17 years. Under such an 80% threshold scenario, no
pixels were considered as non-recovered by the end of the
time series.

This study originated from the idea that post-harvesting
recovery time in Mediterranean forests can be consistently
different from previous studies carried out in Oregon
(Schroeder et al. 2007; Cohen et al. 2010), Canada (White
et al. 2017) and southern Finland (White et al. 2018, 2019)
as a result of differences in species composition, cultivation
methods, and climatic and edaphic conditions. Especially in
regions like Italy where the silvicultural system is coppice and
vegetation recovery are dominated by fast vegetative
resprouting from stumps. Typically, coppice forests in Italy
are managed by retaining standard trees (Mariotti et al.
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2017), that is, even-aged stands with 40–150 trees ha−1 (the
standards) of two to three times the rotation age, which are
released at coppicing. Coppice felling is carried out by
clearcutting at the end of the rotation period (usually 15–
35 years), on areas ranging from a few square hundred square
meters up to 10–20 ha, but clearcut size is most usually in the
range of 1–5 ha (Bottalico et al. 2014).

The short rotation and the rapid asexual regeneration of
trees that is typical of these coppice systems make them more
challenging for monitoring with LTS data. Therefore, the ob-
jectives of this study were twofold. The first objective was to
develop a reference database of clearcuts in Mediterranean
coppice forests that can provide insights on the temporal in-
tervals necessary for detecting and monitoring clearcutting in
these forest types with automated approaches applied to LTS
data. The second objective was to assess the utility of spectral
recovery measures in rapidly regenerating coppice systems, in
order to determine the capacity to monitor coppice regenera-
tion with LTS data and supply information that is useful, to
determine the ratio between increments and fellings and thus
the sustainability of forest management practices. This is cru-
cial to monitor the impact of climate on forest regeneration
capacity.

2 Materials and methods

2.1 Study areas

Three study areas were selected in the Tuscany territory, each
with an area of 225 km2 within the Worldwide Referencing
System (WRS-2) Path 192 Row 030, as shown in Fig. 1. The
study areas were selected following three criteria: (i) areas
without Scan Line Corrector (SLC) failure in Landsat 7
ETM+ since the 31st of May 2003 (USGS 2017), (ii) areas
in different latitudinal zones, (iii) area in different elevation
zones. So, the path of Landsat scene without SLC problem
was divided in three strata on the basis of latitudinal and ele-
vation zones to represent changes in forest types, and one
squared study area per stratum was randomly positioned with-
in the strata.

Study area 1 is located in southern Tuscany with hilly ter-
rain ranging between 0 and 650 m a.s.l. The area is dominated
by Mediterranean vegetation with Pinus pinea, Pinus
pinaster, and Quercus ilex on the coast and Castanea sativa
and Quercus cerris in the inner part. Study area 2 is in central
Tuscany, ranging between 100 and 1000 m a.s.l., and it is
dominated by Quercus cerris, Quercus ilex, Ostrya
carpinifolia, and Castanea sativa. Study area 3 is in the north-
ern pre-Appennine area; the elevation ranges between 35 and
930 m a.s.l., and it is dominated by Quercus pubescens,
Quercus cerris, and Castanea sativa. Six out of the 14
European Forest Types (Giannetti et al. 2018) are represented

in the study area. More information about the orography and
growing stock volume amount of Tuscany forests can be
found in Chirici et al. (2020a). In all the three areas, the silvi-
cultural system for broadleaf tree species is based on coppice
with standards, managed with clearcut with reserves. In the
study areas, trees are cut with a rotation period of approxi-
mately 18–20 years. Following the regional forest authority
regulation, clearcutting can be carried out only during the
winter season (1st of November–30th of April). The coppice
system is not applied to coniferous forests, and clearcutting in
areas dominated by coniferous species is followed by natural
or artificial regeneration. Coniferous dominated stands in the
study areas represent less than 6% of the total forest area, so
the coppice system is the dominant forest management regime
in these areas.

2.2 Forest mask

A fine-resolution forest mask of the three study areas
representing circa 2013 conditions was generated from
reclassifying a local land use/land cover map, available in
vector format at a reference scale of 1:10,000 for the whole
Tuscany Region. The forest mask has a minimum overall
accuracy at 2013 with a minimum overall accuracy of the
85% (Regione Toscana 2013). In the three study areas, the
forest mask was resampled with a pixel size of 30 m to exactly
match the geometric resolution of Landsat scene. The forest
mask was used as a reference to estimate the total forest area in
the three study areas.

2.3 Forest harvesting database

To characterize the post-harvest spectral recovery of vegeta-
tion, we constructed a series of annual maps of clearcuts.
These reference data were generated using visual interpreta-
tion of the LTS in an approach similar to that implemented in
TimeSync for the same aim (Cohen et al. 2010). Photo inter-
preters delineated the spatial extent of each clearcut and re-
corded the year of harvest, adopting a minimum mapping unit
of 0.1 ha. In addition to the LTS, the interpreters used high-
resolution digital aerial photos available on-line via a Web
Map Server service. First acquired in 1999, repeated acquisi-
tions of high-resolution aerial photos of the study areas were
available approximately every 3 years (Regione Toscana
2018). In the case of doubts during the photo interpretation
phase, the clearcuts were visited in the field together with the
local forest administration. As a result of the quality control
implemented, we considered the resulting forest harvesting
geodatabase to accurately represent the location and timing
of clearcutting within our study sites (1999–2015). The
resulting clearcut maps for each of the three study areas are
shown in Fig. 1 (Chirici et al. 2020b).
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The clearcut maps were intersected with the Regional
Forest Inventory (RFI) data to determine dominant species
(by area). The RFI field observations are available in squared
units of 400 m × 400 m (Regione Toscana 2014).

2.4 Landsat time series data

For this study, we constructed a LTS of mostly cloud free
images (cloud cover < 5%) from Landsat 5 TM, Landsat 7
ETM+, and Landsat 8 OLI images acquired in the period
1999–2015 (Table 1) and downloaded from the USGS
web service https://earthexplorer.usgs.gov/. Manual
interpretation was used to mask out areas with clouds
and cloud shadows, which accounted for less than 1% of
the total study areas. All images were acquired during the
late spring/summer period and, to standardize as far as
possible the spectral response of the vegetation, the data

were transformed to surface reflectance using the Landsat
Ecosystem Disturbance Adaptive Processing System
(LEDAPS) (Masek et al. 2006).

Multiple spectral indices and metrics have been applied
in the literature for monitoring post-disturbance vegetation
recovery (Gitas et al. 2012; Chu and Guo 2014). Some
studies have used multidimensional transformations of
original bands such as Tasseled Cap Indices, principal
component analysis, or Fourier transformation (Franklin
2001). On the basis of Pickell et al. (2016) and the appli-
cations presented in White et al. (2017, 2018), we selected
the NDVI and NBR indices:

NDVI ¼ NIR−RED
NIRþ RED

NBR ¼ NIR−MIR

NIRþMIR

Fig. 1 Location of the three study areas within WRS-2 Path 192/ Row
030 Landsat scene in central Italy. In the quadrats are reported the detailed
information of the three study areas: (i) clearcut maps obtained by

photointerpretation and (ii) ALS coverage and (iii) the forest area in light
green
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2.5 ALS data

To characterize the post-harvest development of forest struc-
ture (e.g., height) and to evaluate the derived spectral recovery
trajectory, we used open-access airborne laser scanning (ALS)
data acquired by the Tuscany Regional Administration and by
Italian Ministry of Environment (http://www.regione.toscana.
it/geoscopio). The ALS data covering the three study areas
were acquired in different years between 2005 and 2012
(Fig. 3). The ALS data were acquired under leaf-on conditions
in the late spring or in the summer season (between May and
August) using an ALTM OPTECH 3033 laser scanner. Data
were acquired with a maximum scan angle of 20° and a flying
height of approximately 2000 m. The point density of the
different acquisitions ranged between 0.5 points/m2 and 3
points/m2. ALS-derived products were downloaded, includ-
ing a 1-m digital terrain model (DTM) and a 1-m digital sur-
face model (DSM). On the basis of DTM and DSM, we esti-
mated the canopy height model (CHM) to characterize canopy
heights above ground, by subtracting the DTM from the
DSM. The CHM was used to provide estimates of stand-
level heights, as the top of canopy height is known to be well
estimated with ALS (R2 of 85–90% between measured and
estimated tree heights; Popescu et al. 2002).

2.6 Extraction of remote sensing data of forest
harvested areas

To analyze the post-harvest recovery time of the vegetation,
we normalized the year of disturbance estimated by the pho-
tointerpreter to time since disturbance (Borrelli et al. 2014).

The estimated year of clearcut harvest was reclassified accord-
ing to the time since disturbance, with negative numbers for
years before the disturbance and positive numbers for the
years after the disturbance.

On the basis of this information, for each clearcut polygon,
we calculated the distance (in years) since the disturbance and
calculated the stand-level average and standard deviation of
the NDVI and NBR indices for all the images in the LTS stack,
for each year.

For each clearcut polygon, we also extracted the median
and maximum height of forest vegetation based on the ALS-
derived CHM. We also calculated time since disturbance for
the ALS data, by determining the number of years between the
year of the disturbance and the year of the ALS acquisition.

2.7 Spectral trajectories analysis

For each polygon, we analyzed the spectral trajectories of
NDVI and NBR to monitor changes in temporal spectral
values related to clearcut and recovery of forest vegetation.
We followed the approach of Kennedy et al. (2007) and used
fitted temporal trajectories for our analyses. As reported by
Cohen et al. (2018), the signal associated with spectral indices
can be affected by temporal variations in spectral response as a
function of different atmospheric conditions, vegetation phe-
nology, sun angle variation, and sensor degradation.
Therefore, trend-fitted values are preferred for analyzing spec-
tral trajectories (Schroeder et al. 2007).

Kennedy et al. (Kennedy et al. 2007; Fig. 3) reported that
there are four possible hypothesized temporal trajectories for
forests:

1. Simple disturbance
2. Disturbance followed by exponential revegetation
3. Revegetation from disturbance prior to the observation

record
4. Revegetation from prior disturbance, reaching a stable

point during the observation period

For each of four hypothesized temporal trajectories, initial
estimates of trajectory shape parameters are made, and then
sent to a fitting function to adjust these initial parameters to
find the best fitted trajectory (Kennedy et al. 2007). The dis-
crepancy between the best fitted trajectory and the observed
raw trajectory is summarized in terms of a standard F-statistic,
and the probability of that F-statistic (p value) is calculated.
The model with the lowest p value is selected. The model
parameters describe key aspects of the disturbance regime,
including year of disturbance, change in spectral value at dis-
turbance (a proxy for intensity of disturbance), and rate of
recovery of spectral values (a proxy for recovery rate). This
process was repeated for each clearcut polygon. The fitted
trend trajectories model represents appropriate functions to

Table 1 Time series of Landsat imagery used

Year Satellite sensor Date (dd/mm)

1999 Landsat-7 ETM+ 05/08

2000 Landsat-7 ETM+ 20/06

2001 Landsat-7 ETM+ 07/06

2002 Landsat-5 TM 18/06

2003 Landsat-7 ETM+ 15/07

2004 Landsat-7 ETM+ 17/07

2005 Landsat-7 ETM+ 02/06

2006 Landsat-7 ETM+ 09/09

2007 Landsat-5 TM 19/08

2008 Landsat-7 ETM+ 29/08

2009 Landsat-7 ETM+ 13/06

2010 Landsat-5 TM 10/07

2011 Landsat-5 TM 27/06

2012 Landsat-7 ETM+ 21/06

2013 Landsat-8 OLI 16/06

2014 Landsat-7 ETM+ 11/06

2015 Landsat-8 OLI 06/06
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describe hypothesized trajectories, and the parameters
describing those functions themselves capture the key
characteristics of disturbance and regrowth. We refer to
Kennedy et al. (2007) for more details on the trend-fitted tra-
jectory models.

In our case, before fitting the models, we adopted a
despiking approach similar to that of Kennedy et al. (2010),
Bolton et al. (2015), and White et al. (2017) to avoid noisy
observations derived by inter-annual phenology or atmospher-
ic conditions, where noisy observations are detected by exam-
ining them in relation to their previous and subsequent spec-
tral values using a smooth approach implemented in the R-
cran packages oce (Kelley 2018). Then, the fitted trend
models were obtained by searching for three breakpoints in
the time series regression (i.e., where the coefficient estimates
of linear regression models shifted from one stable regression
relationship to a different one) byminimizing the residual sum
of squares (Bai 1994) (Fig. 3). Hence, breakpoints may be
defined as positions in time by which a significant shift in
the time series values is detected. We adopted three
breakpoints because for our purposes we needed to identify
three different times in the LTS spectral trajectory fitted trend:
(i) the year before clearcut (see Fig. 3), (ii) the year of the
clearcut, and (iii) the point where the trajectory again reaches
a stable condition after the clearcut.

Fitted trends maintained the capacity of expressing the
original vegetation temporal dynamics and were well correlat-
ed with the original spectral reflectance values (0.92 ≤R2 ≤
0.98 for both NBR and NDVI).

On the basis of fitted trend trajectories, for each of the
polygons where the fitted models were associated to the
hypothesis “disturbance followed by exponential revegeta-
tion,” we calculated the Years to Recovery (Y2R) metric
following the approach of White et al. (2017, 2018). The
Y2R indicates the number of years required for a pixel to
attain 70%, 80%, 90%, and 100% (i.e. Y2R70%, Y2R80%,
Y2R90%, Y2R100%) of its pre-disturbance fitted trend
NDVI or NBR value. In our study, the pre-disturbance
value used to define the Y2R was calculated as the average
of the fitted NDVI or NBR values for the 2 years prior to
disturbance, consistent with the approach applied in White
et al. (2017).

For each recovery scenario (i.e., Y2R70%, Y2R80%,
Y2R90%, Y2R100%), as proposed by White et al. (2018), we
determined the CHM median height of the polygon when the
NBR and NDVI trajectories reached the specified spectral
recovery thresholds, in order to determine if the indication of
spectral recovery corresponded to the minimum height value
proposed by Bartels et al. (2016) (i.e., height > 5 m) for
assessing forest recovery, and that also corresponded to the
minimum value required to satisfy the FAO’s definition of a
forest (FAO 2012).

3 Results

3.1 Trends in clearcut area

Overall, the three study areas cover 67,500 ha, of which al-
most 71% (47,745 ha) are forested. In the study period (1999–
2015), a total of 9450 ha were clearcut, representing 14% of
the total area and almost 20% of the total forest area, or ap-
proximately 1.2% of the forest area annually. As shown in
Fig. 2, the most commonly logged forest types are turkey
oak (Quercus cerris), holm oak (Quercus ilex), hop-
hornbeam (Ostrya carpinifolia), and chestnut (Castanea
sativa). Turkey oak was the most commonly harvested spe-
cies, with more than 30% of the forest area dominated by this
species during the study period. Turkey oak clearcuts repre-
sented 41% of the total logged area in study area 2, and 18%
and 19% in study areas 1 and 3, respectively.

The temporal trend of clearcut area for the main species is
reported in Fig. 2. No increasing or decreasing trends can be
denoted, with the exception of a fluctuation forQuercus cerris
with a period of 3–4 years.

3.2 NBR and NDVI spectral trajectories

Fitted and raw trajectories of the spectral signals for both NDVI
andNBR (Fig. 3) clearly denote the estimated change due to the
vegetation removal associated with the clearcut with a decrease,
relative to average values for undisturbed forest areas, in NDVI
of − 20% and a decrease in NBR of − 27%. All the mapped
clearcut polygons, on the basis of the best fitted trend trajecto-
ries models, were associated with “disturbance followed by
exponential revegetation”. In fact, the immediate vegetative
regrowth from stumps in clearcut areas, which is typical of
the coppice system, is evident in the year following clearcutting
with a change of + 16% relative to the year of disturbance for
NDVI and of + 20% for NBR. This can be seen in Fig. 4 where
the first derivative of trends are plotted against time from dis-
turbance. Of note, the temporal trajectories of NDVI and NBR
have consistent trends with an R2 = 0.922.

The spectral trajectories of NDVI and NBR were similar,
althoughNBR had a greater changemagnitude (Figs. 3 and 4).
While NBR has demonstrated capacity to characterize both
short- and long-term recovery (Kennedy et al. 2012, White
et al. 2017), NDVI is known to saturate rapidly making it
better suited to shorter-term recovery assessments (Chu and
Guo 2014; Pickell et al. 2016). In the context of coppice forest
management presented herein, we observed no marked differ-
ence in the temporal trends or assessment of spectral recovery
achieved using either the NDVI or NBR (Fig. 3). For rapid
recovery, both indices were effective for assessing Y2R.

Differential NDVI and NBR trends were estimated for the
different dominant species in the study area without revealing
specific differences in spectral recovery by species. The
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average Y2R for each scenario was 0.51, 0.53, 0.57, and 0.59,
for NDVI and 0.50, 0.53, 0.56, and 0.59 for NBR for the
Y2R70%, Y2R80%, Y2R90%, and Y2R100%, respectively.

With the Y2R80% threshold, 60% of clearcut areas had spec-
trally recovered after 1 year, 80%were recovered after 2 years,
and 90% had recovered after 3 years. With the Y2R70%

O
th

er
 b

ro
ad

le
av

es

Q
ue

rc
us

 p
ub

es
ce

ns

19
99

20
02

20
08

20
11

20
10

20
07

20
12

20
09

20
13

20
05

20
15

20
14

20
04

20
01

20
06

20
03

20
00

Year

Q
ue

rc
us

 c
er

ri
s

Q
ue

rc
us

 il
ex

A
rb

ut
us

 u
ne

do

C
on

ife
ro

us

C
as

ta
ne

a 
sa

tiv
a

O
st

ry
a 

ca
rp

in
ifo

lia

0

5000

C
le

ar
cu

t 
ar

ea
(h

a)

10000

15000

20000

Cut
Total

ha

0

20000

40000

Quercus cerris
Quercus ilex
Ostrya carpinifolia
Castanea sativa

N
A

Fig. 2 In the main part of the
figure the total forest area and the
felled area collected as field truth
within the three study areas, for
the dominant tree species in the
study period 1999–2015. In the
smaller barplot, the felled area for
each considered year for the four
main dominant tree species

Fig. 3 Example of fitted trend
models of spectral trajectories.
The full line represents the
temporal trend average value of
the two vegetation indices NDVI
and NBR directly measured on
Landsat time series images. The
dotted line represents the trend-
fitted models obtained searching
for three breakpoints (i.e., black
dots) in the time series regression
(i.e., where the coefficients
shifted from one stable regression
relationship to a different one)
that identify the spike of clearcut
disturbance
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Fig. 5 Percentage distribution of disturbed areas on the basis of their
recovery spectral behavior. Trends calculated through the indicator
Years To Recovery (Y2R) with different thresholds at 70%, 80%, 90%,
and 100% of pre-disturbed conditions. The red line on the basis of NBR,

in blue for NDVI. In the x-axis, the recovery time, while in the y-axis, the
percentage of total area of clearcut that reached the indicated recovery
threshold

Fig. 4 Normalized differential
percent annual changes of NDVI
and NBR of clearcut areas
depending on the time since
logging. In the bottom right
figure, the regression between the
annual NBR values is displayed
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threshold, we found that 90% of the clearcut areas had like-
wise spectrally recovered within 3 years, while for
theY2R90% and Y2R100% scenarios, we found that 100%
of clearcuts had spectrally recovered after 4 years for both
vegetation indices (Fig. 5).

Analyzing the trends of the Y2R indexes for the four dif-
ferent main tree species indicated that all species have similar
trends in rapid spectral recovery. The Y2R80% indicated that
almost 100% of the clearcut areas had spectrally recovered
within 5 years, regardless of dominant species. Only Ostrya
carpinifolia had a slower regrowth process in the first 2 years
after the clearcut, compensated by a faster rate of recovery in
the subsequent 3 years (Fig. 6).

3.3 ALS trajectories

In total, 1323 clearcut polygons were covered by the ALS
data, representing 5076 ha or 51.2% of the total clearcut area.
Normalized by time since disturbance, temporal trends in for-
est vegetation height in undisturbed forests were estimate

from the CHM ALS data (Fig. 7). These trends relative to
the year of clearcutting indicate that the estimated average
maximum height was 19.3 m, ranging from a minimum of
16.4 m to a maximum of 22.4 m, and remaining relatively
stable over the study period. In the year of clearcutting, there
was a 90% decrease in the estimated median stand height
(from 16.8 to 2.4 m), followed by regrowth at a rate of
0.94 m per year during the first 10 years post-clearcutting
(Fig. 7). Temporal trends in the estimated average median
height indicate rapid regrowth post-clearcut, we found that
the estimated median CHM stand height after 2 years, 5 years,
and 10 years was about 4.5 m (σ = 1.3 m), 8.3 m (σ = 1.7 m),
and 12.1 m (σ = 1.2 m) respectively (Fig. 7), while we found
that the estimated maximum heights in the clearcut areas
remained relatively stable over time, likely as a function of
the retention trees that remained within the clearcuts post-
harvest (Fig. 7).

Moreover, we found that only 13% of clearcut areas that
reached the recovery thresholds (both NDVI and NBR) in the
scenario of Y2R70% also reached at the same time the

Fig. 6 Same information as for Fig. 5 but here presented for the four main
tree species in the study areas. Red line for NBR while in blue for NDVI.
The x-axis gives the time needed for a clearcut to recover, while in the y-

axis gives the percentage of total area of clearcut that reached to the
indicated recovery threshold
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threshold height of 5 m, while 51% of the clearcut area
deemed recovered in the Y2R80% scenario had reached the
threshold height of 5 m. By comparison, 87% and 93% of the
clearcut area that was considered spectrally recovered accord-
ing to the Y2R90% and Y2R100% scenarios respectively had
also attained the 5 m height benchmark (Fig. 8).

Of note, NDVI and NBR post-clearcut spectral recovery
trajectories were strongly related with height trajectories de-
rived from the ALS data (for NDVI: R2 = 0.87 and for NBR

R2 = 0.72). Overall, we found that the use of a more conserva-
tive threshold (i.e., Y2R90% or Y2R100%) ensured that the
majority of clearcut areas that were deemed to be spectrally
recovered had exceeded the > 5-m height benchmark, with
the median height in these areas of 8.3 m. Conversely, lower
spectral recovery thresholds (i.e., Y2R70%) were attained more
rapidly, but were not as strongly associated with a concomitant
achievement of the specified height benchmark (i.e. > 5 m).

4 Discussion

A large effort has been devoted in the last decades to develop
methods for automatically detecting disturbances to forest
ecosystems using remotely sensed data. In turn, the capacity
to characterize the recovery of vegetation at these disturbance
locations has been enabled by increased computational capac-
ity, novel processing approaches, and free and open access to
the Landsat archive (Woodcock et al. 2008). Recent research
has concentrated on temperate and boreal forests demonstrat-
ing that in such conditions: (i) stand-replacing forest loggings
can be accurately mapped by optical remote sensing because
of their unique spectral and spatial characteristics relative to
other disturbance types (Schroeder et al. 2011; Hermosilla
et al. 2015b, 2016) and (ii) the number of years required to
recover to pre-harvest spectral conditions ranges from 7 to
20 years (Cohen et al. 2010; Schroeder et al. 2007; White
et al. 2017; White et al. 2018).

The results from three different study areas in
Mediterranean conditions reported herein confirmed that for-
est harvesting is an important disturbance in these areas, with
21% of the forest area logged in the period 1999 to 2015. Both
the NBR and NDVI were useful for estimating the spectral

Fig. 7 Maximum height (red) and
median height (blue) for all the
mapped clearcuts covered by
ALS data by years from clearcut.
Whiskers represent the 1st and
99th percentiles of the CHM
considered height

Fig. 8 Box plots show the median CHM height of the pixel that reached
the recovery threshold for each scenario: Y2R70%, Y2R80%, Y2R90%,
Y2R100%. Whiskers represent the 1st and 99th percentiles of the CHM
median height. The blue dashed line represents the recovery height
threshold proposed by Bartels et al. (2016), and the thresholds correspond
to the minimum values required to satisfy the FAO’s definition of forest
(FAO 2012)
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changes associated with clearcutting activities in these forests,
with the NBR registering a larger magnitude change associat-
ed with the harvesting. This is consistent with previous studies
that have found that the SWIR bands used in the NBR are
better suited to relating changes in forest structure (Kennedy
et al. 2010; Pickell et al. 2016). For the rapid recovery found
within the coppice forest management system, we found no
marked difference between the NDVI- and NBR-derived as-
sessments of spectral recovery (Fig. 4). This result demon-
strates that the NBR, which has been widely used for post-
disturbance recovery assessments in other forest environ-
ments, is as effective for assessing rapid recovery in coppice
systems as it is for assessing longer-term recovery in boreal
and temperate forests.

With this experiment, we demonstrated that inMediterranean
conditions, when forest management is based on the coppice
system, the post-harvest spectral behavior of these areas is dif-
ferent from that reported in previous studies in boreal and tem-
perate forest conditions. In our study, the Y2R80% metric indi-
cated that almost 80% of the clearcut areas were spectrally re-
covered within 2 years, compared to the ~ 11 years reported by
White et al. (2017) in Canada and by White et al. (2018) in
Finland for boreal and temperate forest conditions.

Such rapid spectral recovery in Mediterranean conditions
may be attributed to two factors. First, clearcut areas in
Tuscany must have reserve trees (the standards), whereby a
minimum of 100 standards per ha is retained. The reserve trees
in coppice forest continue the photosynthetic activities contrib-
uting to spectral trajectory regrowth, while in boreal countries,
after a clearcut, recovery is either from seed already present in
the soil or from nursery seedling that will be replanted within
2 years of the cut. Second, vegetative regeneration from stumps
in the coppice systems is extremely fast, as confirmed by
ground-based studies. For instance, in a chestnut coppice with
standards, Manetti and Amorini (2012) found that the mean
height of vegetative resprout was about 3 m, 8 m, and 10 m
after 2 years, 6 years, and 10 years from clearcut, respectively.
These data are confirmed by our results based on ALS metrics.
In fact, we found that the median CHM height of clearcut areas
after 2 years, 5 years, and 10 years was, respectively, approxi-
mately 4.5 m (σ = 1.3 m), 8.3 m (σ = 1.7 m), and 12.1 m (σ =
1.2 m) (Fig. 7). By comparison, growth rates in boreal forests
are much slower, and that is reflected in longer recovery times
(White et al. 2019).

These results are in keeping with expected growth rates
associated with coppice forest systems, whereby vegetative
regeneration from stumps accounts for the majority of regen-
eration in the stand (Müllerová et al. 2016). Unlike regenera-
tion from seed, regeneration from stumps competes less with
herbs and other vegetation that can quickly establish at a site.
We observed that 50% of clearcut areas attained 80% of their
pre-disturbance spectral value in 1 year, with a median height
of 2.9 m (δ = 12.8 m).

These results demonstrate the potential of using LTS data
for the automated detection of clearcut areas in coppice for-
ests, and moreover, to monitor the rate and efficacy of post-
clearcut regeneration. Most of the algorithms used for auto-
mated disturbance detection have been developed in boreal or
temperate forest environments, where the persistence of the
change event is sufficient to enable detection of disturbances
(e.g., Kennedy et al. 2010; Huang et al. 2010a, b; Hermosilla
et al. 2015a, b). But such approaches can be confounded by
disturbance followed by rapid regeneration, particularly if
temporal noise filtering approaches are aggressive, resulting
in the misidentification of these events as noise. In fact, the
characteristic 1-year spike of NBR and NDVI spectral trajec-
tories that we found (Fig. 4) is similar to the spectral behavior
that other studies may identify as noise spikes due to residual
clouds, snow, smoke, or shadow in the analyzed images
(Hermosilla et al. 2016; Kennedy et al. 2010). For example,
Kennedy et al. (2010) affirmed that a real land cover change
should be more persistent than a 1-year spike, because in
cover changes, the post-spike spectral value cannot return to
the pre-spike value so quickly. Our results provide instead a
different interpretation of such rapid changes, which in our
cases are due to the very fast post-harvesting recover of veg-
etation. Our findings suggest that the calibration of temporal
noise filtering procedure optimized for temperate and boreal
forest conditions cannot be used in Mediterranean coppice
forest if the objective is to establish an automated system for
disturbance monitoring (Masek et al. 2013), and to report the
related trends in biomass (Pickell et al. 2014).

However, time series from Landsat eventually integrated by
more recent missions such as Sentinel-2 offer a unique oppor-
tunity to provide amore complete, consistent overview of forest
disturbances from natural or anthropogenic causes (White et al.
2017), especially because several authors have reported already
that traditional forest logging statistics constructed from admin-
istrative records on felling authorization may not be consistent
or spatially explicit, (e.g., Canada:Gillis and Leckie (1996);
Italy:Chirici et al. (2011)). The integration of these data streams
in a virtual constellation concept (Wulder et al. 2015) increases
the density of the time series and, when coupled with increased
computational capacity (Hansen and Loveland 2012), enables
automated approaches to disturbance detection and attribution
(e.g. Hermosilla et al. 2015a, b), even in complex European
land use contexts (White et al. 2018; Senf et al. 2017). Our
results demonstrated that clearcut areas in Mediterranean cop-
pice systems can be very accurately predicted from LTS; thus,
operational systems could be implemented to produce on an
annual basis clearcut area statistics, which at the moment are
not produced in Italy. LTS can also be used to monitor
post-harvested vegetation recover over large areas in
order to provide reliable information on the impact of
climate change on the regeneration capacity of coppice
forests.
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5 Conclusions

Based on the analysis of a LTS acquired between 1999 and
2015 for three study areas located in Tuscany (Italy), the fol-
lowing conclusions can be drawn relative to the defined re-
search objectives:

– Clearcutting in coppice systems can be readily detected
and mapped via visual interpretation of LTS data in con-
junction with high-resolution aerial imagery, thus
confirming the results from Chirici et al. (2011) in a dif-
ferent Italian region. This work contributes to the devel-
opment of a reference database of clearcuts in
Mediterranean coppice forests that can provide insights
on the temporal intervals necessary for detecting and
monitoring clearcutting in these forest types with auto-
mated approaches applied to LTS data.

– The NBR index and associated recoverymetric (the Years
to Recovery or Y2R) is appropriate for studying spectral
change and rapid recovery trajectories of forests in
Mediterranean conditions.

– Clearcut areas in coppice forests have a very rapid post-
harvest recovery with 80% of the disturbed areas spec-
trally recovering within an average of 2 years post-distur-
bance. These results are independent of the tree species
composition and are confirmed by temporal analysis of
ALS data.

– ALS data confirmed prior in situ observations relating to
the vertical regrowth of coppiced trees, which grow at a
rate of approximately 1 m per year in the first 10 years.

– Methods and approaches for monitoring post-disturbance
recovery using automated LTS analysis systems devel-
oped for boreal and temperate forests have to be adapted
to the very fast spectral recovery rates of Mediterranean
coppice forests.
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