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Abstract
& Key message Using the three characteristic points of a forest stand, dg (mean quadratic diameter), dmin (diameter
of the smallest tree) and dmax (diameter of the largest tree), appears informative enough to determine the
parameters of the whole diameter distribution and, hence, the standing volume, with an accuracy of 2–3%. This
is related principally with a particular feature of the Weibull distribution function, and the empirical dependency of
the main scale parameter α + β from the mean quadratic diameter (dg): This allows the prediction of the parameter
β with an unexpectedly high likelihood. This feature could be used for growth modelling as well as inventory
purposes, at least for monospecific and even-aged stands and, maybe more, because this feature is proper to the
function itself.
& Context One of the most appealing applications of diameter distribution functions is to predict compliant stand diameters
without needing to tally all stems, but in determining the function parameters only on the base of simple stand characteristics.
This can be applied for yield model construction or inventory purposes.
& Aims The aim of this paper is to compare different methods of estimating the Weibull distribution parameters, partly based on
parameter recovery method (PRM). They use a remarkable, empiric property of the Weibull function. Their performances are
assessed in comparison to real distributions from a wide database of permanent Swiss yield plots repeatedly measured (time
series) for Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.).
& Methods The Weibull distribution offers the advantage of simple but reliable estimation procedures. One of these is the main
(scale) parameter β being given at a remarkable point of the function free, i.e. independent from the shape parameter γ. Because
dg lies very close to this point, it correlates empirically very tightly with this parameter and thus allows for a trustful simple
estimation. We compare, with appropriate statistic tests, real distribution with such obtained with the usual maximum likelihood
estimation (MLE) of the Weibull parameters and those obtained with these new procedures.
& Results The results obtained from a set of 800 yield plots of regular spruce stands and 596 of beech in Switzerland illustrate the
good performances of the two much simpler procedures. The accuracy of estimating the standing volume is about 1.4% for beech
and 2.8% for spruce when the site index (SI) is known.
& Conclusion The three considered characteristic stand attributes (dg, dmin and dmax) appear robust enough for determining the
diameter distribution with a respectable accuracy. This is enough reason for a revival of the old, but very ingenious, method of
angle count sampling of Walter Bitterlich (1947).
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1 Introduction

One of the most appealing applications of distribution func-
tions is prediction of compliant stand diameter distributions,
without needing to tally all stems but in determining the func-
tion parameters only on the base of simple stand characteris-
tics. As predictors, we can use, for instance, the mean dbh
(mean diameter at breast height), dmax (diameter of the largest
stem), dmin (diameter of the smallest stem of the cohort) and
dg (mean quadratic diameter), which are easily identifiable in
the field. This can be applied to yield model construction
(Borders et al. 1987; Schütz and Rosset 2016) or for inventory
purposes. It allows for a simple and, therefore, inexpensive
assessment and accurate estimations of the standing volume,
for instance when G (basal area) is determined with the angle
count method (Bitterlich 1947, 1984) and N (total stem num-
bers), with a smart phone application like MOTI (www.moti.
ch).

The Weibull density function (Weibull 1939; Bailey and
Dell 1973; Dubey 1967) is mainly used for such parameter
estimation because of its high flexibility and some very inter-
esting features, particularly the independency of parameters β
and γ, at least at one particular position (Dubey 1967; Zanakis
1979). The reduction to the two-parameter version of the cu-
mulative density Weibull function allows for great simplifica-
tion in parameter estimation.

As a matter of principle, different methods of parame-
ter estimation could be considered from an analytical
mathematical approach—the so-called ‘parameter recov-
ery method’ (PRM) after Hyink and Moser (1983)—to a
more empiric-based method, by regressing the parameters
on stand structure indicators from a reliable database (so-
called ‘parameter prediction method’ (PPM)) after Clutter
and Bennett (1965). Even other ways, i.e. non-parametric
approximation methods, could be used, i.e. those with the
Newton-Raphson algorithm. Decisive is here not the
method itself, but rather the goodness of fit over the
whole distribution or the accuracy in stand volume
estimation.

The aim of the presented paper is to compare different
methods of parameter estimation. For estimating the pa-
rameter β, we use a remarkable property of the Weibull
function as well as the empiric relationship between α + β
and dg. The parameter γ is derived with parameter recov-
ery methodology. The performances are assessed in com-
parison to real measured distributions from a wide data-
base of permanent Swiss yield plots repeatedly measured
(time series) for Norway spruce and European beech em-
anating from 800 inventory for Norway spruce and 596
for European beech, and finally, as a comparison bench-
mark, we use the results of parameter estimation of these
real stem diameter distributions fitted with usual statistical
methods.

2 Material and methods

2.1 Data

The data for comparing diameter distributions are diameter
lists of 800 permanent yield plots of even-aged and monospe-
cific spruce and 597 beech stands, repeatedly measured over a
long time (1882–2013), from the yield database of the Growth
and Yields Research Group of the Swiss Federal Institute for
Forest, Snow and Landscape Research WSL, Birmensdorf,
Switzerland. These permanent WSL yield plots for two spe-
cies (at 219 sites for spruce and 138 sites for beech) are dis-
tributed all over Switzerland, with the exception of sites above
1200 m above sea level. The size of each plot is around
0.25 ha (in some case, as much as 0.5 ha). All trees are iden-
tified by a number. Measurements are recorded every 5–
7 years after a thinning intervention. The dbh of all trees of
the whole cohort, i.e. excluding second growth or understorey,
is accurately recorded crosswise with a calliper to mm accu-
racy. The height is recorded on a sample of 20–40 trees, with a
JAL-type hypsometer with a 7-m reference rod and an accu-
racy of about 0.8 m (Schmid et al. 1971) and, after 1990, with
a Vertex hypsometer. Thinning interventions in WSL plots
correspond generally to conventional practice in terms of thin-
ning type and intensity, i.e. thinning from below until about
1940 and selective thinning according to Schädelin (1934)
after 1940.

Figure 1 shows the range of ages, stand densities (with the
stand density index (SDI) = Gstand / Gmax, where Gmax is deter-
mined after Reineke’s size density rule, after Schütz and Zingg
2010) and site indices (hdom at age 50) of the permanent yield
plots considered. The reason for the difference in stand density
between spruce and beech is that the database for beech contains
more thinning trials with different density variants. The stem
numbers per plot range from 30 to 2320, with an average of
404 for spruce, and from 20 to 3040, with an average of 287
for beech.

2.2 Methodology

The Weibull probability density function reads

f xð Þ ¼ γ=β
x−α
β

� �γ−1

e − x−α
βð Þγð Þ ð1Þ

where α is the location parameter, β the scale parameter and γ
the shape parameter.

Its cumulative form is

F xð Þ ¼ 1−e− x−αð Þ=βð Þγ ð2Þ

Usually, the best considered methodology for fitting a di-
ameter distribution is the maximum likelihood method, as it is

47    Page 2 of 11 Annals of Forest Science (2020) 77: 47

http://www.moti.ch
http://www.moti.ch


0

5

10

15

20

25

30

35

< 14 14 -16 16 -18 18 -20 20 - 22 22 - 24 24 -26 26 - 28 > 28

% SI class
site index class 

spruce

beech

0

10

20

30

40

50

60

> 0.6 0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9-1.0 > 1.0

% SDI class
stand density class 

spruce

beech

0

5

10

15

20

25

30

35

40

<40 40-59 60-79 80-99 100-119 120-139 >140

% age class
age class 

spruce

beech

Fig. 1 Frequencies of some
characteristics of the yield plots
used for comparison, regarding
age, stand density (SDI) and site
index (SI), whereas SDI isGstand /
Gmax; Gmax is assessed according
to Reineke’s site density rule (see
Schütz and Zingg 2010); SI is the
dominant height (hdom) refer-
enced at age 50
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used in most statistical standard procedures (as in, for in-
stance, the statistical package SAS Inc.). This method, referred
to as maximum likelihood estimation (MLE), is our reference
benchmark for comparison, at least concerning the equality of
fitting.

2.2.1 Estimating the parameter α

Considering the Weibull density functions (1) and its cumula-
tive form (2), the two-parameter version is usually used for
fitting the parameters by setting α = 0 or α = dmin, the lesser
measured diameter. The former simplification is not quite suf-
ficient after Zanakis (1979) or Gorgoso et al. (2012), because
dmin lies at the first decile interval of the cumulative distribution,
and not 0.

Under such an assumption that dmin lies at half the first decile
interval of the Weibull cumulative distribution function, we
generated with Eq. (2) the 135 dmin values of in a range of
Weibull parameters β and α, corresponding to our database,
and a constant γ of 2.16, corresponding to the mean of our
database. As a regressor for fitting dmin − α, we use a rough
indicator of the first decile interval position, namely ((dmax − d-
min) / N)dmin. It results in, regression analytically, a tight expo-
nential relationship (exponent 0.4589) with an R2 value of
0.9993 as

dmin−bα ¼ 1:007755 dmax−dminð Þ=Nð Þdmin½ �0:4589 ð3Þ

Hence, bα could be determined from the stand characteris-
tics and, for further parameter estimation, we can use the two-
parameter Weibull version.

2.2.2 Estimating the parameter β

For the purpose of fitting, using only simple stand characteris-
tics, as our aim, different methods can be used, derived mathe-
matical analytically from function (2) as the method of mo-
ments or of the percentiles, with the former being mostly ap-
plied in PRM (Mehtätalo 2004).

The percentile methodology is quite interesting because
some percentiles can be linked to simple stand characteristics
easily identifiable in forests, like dmax or dmin, lying at an
assumed percentile value of 1/2N (dmin) and 1 − (1/2N) (for
dmax), respectively. Moreover, in order to obtain reliable re-
sults, it is recommendable to use characteristics sufficiently
distant from another on the x-axis, taking into account the
spreading of the distribution. Thus, we should additionally
include an indicator somehow in the middle (or the centre of
gravity) of the distribution. Because G is easily assessed with
the angle count method and bothN andG for instance with the
help of a smart phone application like MOTI (www.moti.ch),
it results with dg as a very pertinent stand indicator while, in
addition, being functionally linked to the basal area.

A key feature of the Weibull cumulative distribution func-
tion (2) is that the 63.2th percentile (at the point 1 − e−1) is
equal to β or β +α in the case of the three-parameter Weibull
function (Bailey and Dell 1973; Dubey 1967; Zanakis 1979).
At that point, the influence of γ disappears. The 63.2th per-
centile is thus particularly predestined for parameter estima-
tion but is evidently not identifiable easily in a forest. In con-
trast, dg lies very close (about 2–3%) to it, at least for mono-
specific and regular stands. In fact, the regression between the
empiric values of β +α and dg is extremely straight and tight.
(Residuals have been proven correctly distributed, not
shown). This is somehow evident when looking at the scatter-
ing of the values in Fig. 2. Thus, the parameter α + β is accu-
rately well described by a linear regression line with a remark-
ably high coefficient of determination (R2 = 0.998 for the
beech yield plots and 0.9995 for spruce). Hence, if dg (and
α) is known, β can be easily obtained via Eqs. (3), (4a) and
(4b). For the aforementioned Swiss plots, we obtained the
following fitted regression lines (Eqs. (4a) and (4b)):

bαþ bβ ¼ 0:0703þ 1:0267 d; for beech ð4aÞ
bαþ bβ ¼ −0:0182þ 1:0311 dg; for spruce ð4bÞ

2.2.3 Estimating the parameter γ

This happens in the sense of the parameter recovery meth-
odology. We can analytically derive the relations between
the parameters and the empirical values of N, dmin and d-
max. This leads to the following non-linear system of
equations relating these observed values with unknown
parameters.

If dmax is the largest observed dbh value among the N
ordered observations (d1, d2, …, dN), we set F(dmax) ≈1− 1

2N

which leads to dmax−α
β

� �γ
= −ln( 1

2N ) = ln(2N) and

dmax ¼ β ln 2Nð Þð Þ1γ þ α ð5Þ

Likewise, for the smallest observation (dmin), we have
F(dmin) ≈ 1

2N which leads to

dmin ¼
�
β −ln 1−

1

2N

� �� �1=γ

þ α ð6Þ

For the special case α = 0 (with the two-parameter Weibull
function), we obtain from Eqs. (5) and (6) the following solu-
tion for γ:

bγ ¼
ln ln 2Nð Þð Þ−ln −ln 1−

1

2N

� �� �
ln dmaxð Þ−ln dminð Þ ð7Þ
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And for β

bβ ¼ dmax−bα
ln 2Nð Þð Þ1=γ

ð8Þ

Hence, there are two ways of determining β and γ. First is
in the sense of parameter prediction estimation (PRM) using
Eqs. (3), (7) and (8), the method referred to as PRM1. Second
is in the sense of a combination of PPM and PRM using

Eqs. (3), (4a) and (4b) and then

bγ ¼
ln −ln

1

2N

� �� �
ln

dmax− bαbβ
 ! ð9Þ

This method is referred to as PPM1.
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The difference between the PRM and PPM solutions is that
only two indicators, namely dmax and dmin, are required for the
PRM solution against three, adding dg, in the PPM solution.
Because dg is a very relevant reference, we should expect
better fitting with the PPM solution.

Because the identification of dmax and particularly dmin is
somehow uncertain, it could be useful to analyse whether both
indicators could be derived empirically. In fact, scatter plots d-
max (Fig. 3) as well as dmin (Fig. 4) in relation to dg of the Swiss
data exhibit a non-linear, relatively tightly correlated empirical
relationship. We found a similar empirical non-linear relation-
ship between dmax and dmin with the explicative variable G / dg
(identical to dg N), a rough indicator for the yield level, with an
R2 value of 0.611 for beech and 0.603 for spruce plots. Both
regressors can be combined in a bilinear regression of the fol-
lowing form. For beech, the second explanatory variable (G /
dg) is not significant in the case of dmin, so this member is not
considered. The exponents have been derived from the single
relationship fitted with a power function.

dmin ¼ 0:244648 dg1:2384; for beech with an R2 value of 0:90

ð10aÞ
dmin ¼ 0:292814804þ 0:216214381 dg1:24

� �
þ 1:095854229 G=dgð Þ−1:23;
for spruce with an R2 value 0:899

ð10bÞ

dmax ¼ 1:401206877þ 3:689977935 dg0:77

−5:325663339 G=dgð Þ−0:79;
for beech with an R2 value of 0:948

ð11aÞ

dmax ¼ 0:902011561þ 3:2457725592 dg0:8
� �

−4:936440585 G=dgð Þ−0:75;
for spruce with an R2 value of 0:925

ð11bÞ

The contribution of both explanatory variables is highly
significant.

In the frame of developing growth models on smart phones
for practitioners (see Schütz and Rosset 2016), it appears in-
teresting to test how good the performances of volume esti-
mation would be if renouncing the measurements of dmax and
dmin based instead on Eqs. (10a), (10b), (11a) and (11b) and
using solely dg. In this sense, we tested two alternative esti-
mationmethods, referred to as PRM2 and PPM2,with empiric
estimates of dmax and dmin introduced in otherwise the same
resolution equation systems as for PRM1 and PPM1.

Summarising, in the following, we tested 4 methods of
estimating the Weibull parameters (methods 2–5 below) to
determine the distribution of diameters and compare it to
method 1 obtained from fitting the tallied diameters with a
statistic classical method (MLE):

1. MLE, the maximum likelihood resulting from computa-
tion with a tallied diameter list and the statistic software
package SAS Inc.

2. PRM1, parameter recovery based on dmax and dmin

3. PPM1, a combination of parameter recovery and empiric
parameter prediction based on dmax, dmin and dg

4. PRM2, the same based on empiric estimate of dmax and
dmin and assessment of dg

5. PPM2, the same based on empiric estimate of dmax and
dmin and assessment of dg

2.3 Assessment of the goodness of fit

Criteria for the quality of fitting a distribution depend on the
modelling aims. In our case, the equality on the whole distri-
bution is more determinant than the adequation in every di-
ameter class. The so-called ‘Kolmogorov-Smirnov test’
(Smirnov 1948; Reynolds et al. 1988) is often applied. It mea-
sures the maximal deviation between a real cumulative distri-
bution and an estimated distribution. In our case, this test does
not seem particularly adequate. So, we applied the following
method for assessing the goodness of fit.

We compare the empirical quantiles of the dbhs in the
stands with the corresponding quantiles obtained from the
fitted Weibull distribution (so-called Q-Q plots) (Fig. 5).
Ideally, one should obtain the identity regression line y = x
and a coefficient of determination (R2) close to 1. We defined
an R2 value of 0.95 as an acceptable limit for such goodness of
fitting.

Because one of the main purposes of such modelling is to
determine the standing volume, the impact of the largest trees
is more determinant than that of the small ones. Adjustment in
the upper part is therefore more pertinent. Thus, as a fitting
criterion on the stand level, we can consider the accuracy of
estimating the standing volume (Vs stem without branches) to
be the relative absolute difference between Vinventory and
Vestimated. In the same token accuracy of estimation, the ddom
(diameter of 100 trees/ha in %) could be considered too.

The stem volume (Vs) is estimated with a two-variable
volume function (with two independent variables di and hi)
of the form

V s ¼ α e βln dið Þþγ ln dið Þ2ð Þþδln hið Þþε ln hið Þ2ð Þð ð12Þ
Equation (12) was established especially for spruce and
beech on the basis of numerous lying tree measurements
in 2-m sections (15,285 for spruce and 8295 for beech)
from the WSL database (unpublished). Because our da-
tabase of yield plots does not contain all hi values, only
a sample, we need to find an estimation for the missing
height. Therefore, single empiric height values of yield
plots with hi measurement (226 different hi measures
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from 62 yield plots) are fitted apart with the semi-
logarithmic model function (data not shown)

hi ¼ αhi þ βhi ln dið Þ ð13Þ

Thereafter, only the regressor βhi is required because it
gives the curvature of the actual height functions. For model-
ling purposes, the height curves should be adjusted to the
development stage, which depends on the SDI (ddom at age
50). So for each development stage, we determine αhi to pass

through the corresponding point (hdom; ddom) of the actual
stand height development.

Summarising, when regressed on the variables dg and
ln(dg) or dg2, we obtain the βhi of the Swiss plots

βhi ¼ 5:40133þ 0:24498 dg−0:00394 dgð Þ2 for spruce ð14aÞ
βhi ¼ 1:87183þ 1:72503 ln dgð Þ for beech ð14bÞ

The missing coefficient αhi is obtained when fitting the
height curves to pass through the point hdom:ddom,
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determined with a SDI function (not shown, see Schütz and
Rosset 2016).

Thus

αhi ¼ hdom−βhi dgð Þ ln ddomð Þ ð15Þ

3 Results

Table 1 summarises the results for goodness of fit. As signif-
icant for the main test (Q-Q plots) is considered a R2 value
higher than 0.95.

Figure 6 il lustrates two examples of diameter
distribution—one with well-balanced (unimodal) distribution
over the diameter classes and one with unequal distribution.
Because of compensation effects, the former leads to accept-
able fitting over the whole distribution.

The method of the maximum likelihood as benchmark ap-
pears compliant, based on the R2 value of the Q-Q plots in
90.1% (beech) and 99% (spruce), respectively. This method
ranks first in 81.6% (beech) and 93.5% (spruce), respectively.
In comparison, the method based on the empiric relationship
between parameters β and dg (PPM1 and PPM2) presents
compliant results in 65.1% (68.7) for PPM1 and 72.3%
(55.9) for PPM2, respectively. The result of such fitting with-
out tallying all diameters surpasses even the results of the
classical fitting (with the maximum likelihood estimate) based
on a full inventory of the diameters in 24.6 (18.65)% of the
case for beech and in 3.2 (1.4)% for spruce.

As expected, the PRM based only on dmin and dmax per-
forms less well with 21.3% (32.5) and 53.7% (29.9) for
PRM2.
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Fig. 5 Linear regression of empiric diameter quantiles against the fitted
quantiles of distribution estimated with the Weibull parameters obtained
by the three different estimation procedures for spruce, considered as a
method of goodness of fitting

Table 1 Goodness of fit for comparing the five methods of adjustment
(see Section 2.2)

Comp. inventory with MLE PRM1 PPM1 PRM2 PPM2

Q-Q plots1

Beech (%) 90.1 21.3 65.1 53.7 72.3

Spruce (%) 99.0 32.5 68.7 29.7 55.7

Ranking % 1st2

Beech 81.6 2.9 24.6 4.2 18.6

Spruce 93.5 0.9 3.2 1.0 1.4

Accuracy for Vs
Beech (%) 1.2 7.1 0.2 − 2.9 − 0.9
Spruce 0.4 − 1.3 − 1.2 − 8.2 − 1.9

Accuracy for ddom

Beech 0.5 − 1.4 − 3.2 − 3.2 − 2.3
Spruce 0.6 − 5.0 − 4.8 − 7.2 − 5.7

1% number of plots with R2 > 0.95
2% plots ranking first over the 5 methods on the base of the R2 value of
Q-Q plots
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The methods without assessing dmax and dmin, but based on
the indirect empiric way (PRM2, PPM2), perform better, at
least in the case of beech (53.7% over 21.3 for PRM and
72.3% over 21.2 for PPM).

Estimation accuracy of the standing volume is 1.2%
(resp. 0.4% for spruce) for the MLE reference method.

More astonishing is the remarkable performance of the
PPM1 method with practically similar (even in average
better) results (0.2–1.2%). Here too, the method with
using only dg (PPM2) performed quite respectably
(2.9, 1.4%). In contrast, the PRM did not perform very
well.
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parameter estimation using a
statistical program (SAS Institute
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the same with the real dmax and
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4 Discussion

It may be astonishing that a simple solution, with only dg as
information, allows for the prediction of diameter distribution
with the same significance (or even better) than the usual
fitting of a full diameter inventory and, consequently, allows
us to assess the standing volume with an accuracy of 0.9–
1.9%. If generalisable, this would open bright prospects for
growth modelling and for forest inventory.

These empiric results emanate from yield plots selected for
even aged and monospecific composition for two main tree
species in Switzerland, albeit with enough representation in
numbers and sites. This already demonstrates the adequacy for
growth modelling, at least for the above-mentioned site con-
ditions and, let us say, for temperate Central Europe, in so far
as a growth model usually simplifies the growth prediction to
monospecific species. Similar results had been found for four
other main tree species—namely Scot pine (Pinus sylvestris
L.), Douglas fir (Pseudotsuga menziesii Mirb.), European
white oaks (Quercus robur L. and Quercus petraea Liebl.)
and European common ash (Fraxinus excelsior L.) (Schütz
and Rosset 2016), with similar straightness and high R2 for
the α + β dependency to dg, confirming the method validity
that dg lies in the vicinity of the 63.2th percentile and, there-
fore, where the influence of γ disappears. There are good
reasons to think that this remarkable feature could be general-
ised, with the eventual exception of too irregular stands. Such
a possible generalisation should be addressed in further
research.

From the three applied independent variables for predicting
the diameter distribution, dg is the most pertinent because it
lies at the centre of gravity of the distribution and is directly
related to the basal area and, thus, with the standing volume.
This fact explains why the parameter recovery method using
only dmin and dmax does not match so well. As demonstrated,
dg is very tightly correlated with the main parameter β respon-
sible for the spreading of the distribution. This is in relation to
the properties of the Weibull function itself and not somehow
a serendipitous empiric result.

Once β is assessed, γ can be derived so the function passes
through to the point dmax (see Eq. (9)). In this regard, the ques-
tion arises whether only one large tree is sufficiently represen-
tative and consistent to characterise the distribution. Figure 3
and Eqs. (10a) and (10b) show that dmax, in relation to dg, is
quite consistent, with additional G / dg (equal to dg N) as an
independent regressing variable. The statistical multiple corre-
lation lies with an R2 value of 0.948 and 0.925, respectively. In
previous studies, we showed in a thinning experiment that the
position of the largest trees is quite stable on the long run and
relatively uninfluenced by the thinning intensity (Schütz et al.
2015). This could be explained by the fact that in every popu-
lation, the largest trees have sufficient growth momentum to
maintain their socially dominant position without suffering

from competition from the neighbours. One condition is, of
course, that the largest tree should stem from the same cohort,
excluding, for instance, standard remnants. So, we can con-
clude that dmax appears to be sufficiently robust and appropriate
to characterise the right part (i.e. the most important part for
standing volume assessment) of the distribution. Kangas and
Maltamo (2000), using dmax dmin and a basal area–weighted
mean diameter, found a similar standing volume accuracy be-
tween 1 and 2%, which is more than the value 3.6–5.7% found
by Siipilehto and Mehtätalo (2013).

The importance of dmin is more subject to concerns. In
more irregular stands, in mixed stands and in unevenly aged
ones, dmin is probably not so convenient and not so clearly
identifiable in opposition to dmax, which represents the biolog-
ical best-fitted self-dominating sustainable element of the co-
hort. In such cases, the empiric relationship between dmin and
dg (and eventually G / dg) can be useful. This explains why
the PPM2method performs better than PPM1. In older stands,
a secondary crop installs itself spontaneously, so dmin should
belong to the cohort being considered, excluding, for instance,
second growth or under-storey. Then again, the smallest trees
are more unstable and, so, could be damaged after logging
operations and could otherwise die from overcrowding.
Nevertheless, Fig. 4 shows that its distribution is far from
unacceptable. Because dmin influences the origin of the
distribution, it contributes less from the points of view of
productivity or value. The use of the two smallest trees, as
Zanakis (1979) proposes, or even several more, to somehow
smooth this point of reference, does not change the problem.

Strictly considered, dmax (as well as dmin) depends on the
reference area on which they have been recorded. It is quite
evident that, for small areas, the largest recorded tree does not
have the same significance as for very large areas. Thus, it
seems better to assess dmax over a sufficiently large area.

5 Conclusions

Using the three characteristic points of a forest stand, dg, dmin

and dmax, appears informative enough to determine the param-
eters of the whole diameter distribution and, hence, the stand-
ing volume with quite a valuable accuracy. This is connected
principally with a particular feature of the Weibull distribution
function, which allows the prediction of the main parameter β
from dg with an unexpectedly high likelihood. This feature
could be used for growth modelling as well as inventory pur-
poses, at least for monospecific and even-aged stands but,
maybe more, because this feature is proper to the function
itself. Once the scale parameter β is estimated, the two other
parameters can be recovered so that the distribution passes
through the values dmax.

This leads to a revival of an old but very ingenious method
of the angle count sampling of Walter Bitterlich (1947).
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Furthermore, it is quite inexpensive and easy in comparison to
plot sampling or full inventory but, nevertheless, performs
similarly or even better (Piqué et al. 2011). The remarkable
evolution of information technologies (ITs) allows for the ap-
plication of such growth models for smart phones or tablets as
useful and accurate devices based on these findings (Schütz
and Rosset 2016) allowing interactive participation too.
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