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Abstract
& Key message We propose a methodology to develop a preliminary version of a growth model when tree-level growth
data are unavailable. This modelling approach predicts individual tree growth using only one-time observations from
temporary plots. A virtual dataset was generated by linking the whole stand and diameter distribution models. The
individual tree model was parameterized using Bayesian calibration and a likelihood of diameter distributions.
& Context A key component of tree-level growth and yield prediction is the diameter increment model that requires at least two
different points in time with individual tree measurements. In some cases, however, sufficient inventory data from remeasured
permanent or semitemporary plots are unavailable or difficult to access.
& Aims The purpose of this study was to propose a three-stage approach for modelling individual tree diameter growth based on
temporary plots.
& Methods The first stage is to predict stand dynamics at 5-year intervals based on stand-level resource inventory data. The
second stage is to simulate diameter distribution at 5-year intervals using a Weibull function based on tree-level research
inventory data. The final stage is to improve the reliability of individual tree diameter estimates by updating parameters with
Bayesian calibration based on a likelihood of diameter distributions.
& Results The virtual-data-based diameter increment model provided logical patterns and reliable performances in both tree- and
stand-level predictions. Although it underestimated the growth of suppressed trees compared with tree cores and
remeasurements, this bias was negligible when aggregating tree-level simulations into stand-level growth predictions.
& Conclusion Our virtual-data-based modelling approach only requires one-time observations from temporary plots, but provide
reliable predictions of stand- and tree-level growth when validated with tree cores and whole-stand models. This preliminary
model can be updated in a Bayesian framework when growth data from tree cores or remeasurements were obtained.
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1 Introduction

Efficient and accurate models for growth and yield are a funda-
mental tool in forest sciences, playing a key role in forest man-
agement, forest planning, ecological studies, or in fact any disci-
pline within the field. Traditionally, large efforts have been
placed to design and retrieve the necessary data, often from large
databases or long-term observations in permanent plots. Several
places have had these data available since long ago: there are
long-term experimental plots being still surveyed in Germany
that date back to the 1860s (Prodan 1965; Pretzsch 2010). As a
second source, plots from national forest inventory (NFI) are a
good alternative for data retrieval, although, may lack accuracy
and detail as are not necessarily designed for growth and yield
models. In this case, the large amount of data available may
compensate these limitations.
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However, what are the alternatives when the purpose of anal-
ysis is a new species or a new region with limitations in longi-
tudinal data for single trees? For instance, despite its large role in
forest resources, Brazil has only recently started a country-level
NFI based on a standardized and systematized methodology,
which for some time will provide a single measurement
(Freitas et al. 2016; da Luz et al. 2018). The same would apply
to large countries in Asia, such as Mongolia, with 11.3 million
hectares of boreal forest, which has completed its first NFI
recently (Altrell 2019). In Europe, despite the large experience
in NFI, several countries lack permanent plots as a main source
of data (Tomppo et al. 2010). In fact, according to the global
forest resource assessment, 40 of the 99 tropical countries in the
report did not have at least two comparable NFI measurements
on permanent plots that could be the basis for individual tree
growth models (FAO 2015; Romijn et al. 2015).

When sufficient data from permanent plots are not available,
semitemporary or interval plots are useful to develop forest
growth models. Those plots are established in stands of differ-
ent development stages and measured at least in two points in
time. However, local forest regulations often limit the establish-
ment, collection, and availability of extensive plot data along
time; but, while remeasurement data could be more difficult,
one-time observations in resource inventory data from tempo-
rary plots are more commonly available. This type of inventory
relies on temporary plot sampling that may provide databases
for modelling sample whole-stand models (e.g., Vanclay 2010)
and diameter distribution models (e.g., Cao 2004). The basic
data units of whole-stand models are stand and site parameters.
Consequently, their construction and simulation do not require
tree-level information of stand dynamics. In contrast, size-class
models use an entire tree class as the basic unit, and individual
tree models rely on the information from each tree. This ap-
proach, although useful, presents a more restricted suitability
for individual tree models.

The individual tree approach, although being more prescrip-
tive in data needs, performs largely better to characterize growth
under variable stand conditions and management practices
(Weiskittel et al. 2011). For instance, concerning thinnings, a
whole-stand model is limited since thinning treatments are de-
signed to selectively remove individual trees, which leads to
alteration of the residual stand structure. To address these lim-
itations, an alternative use of temporary plots is to estimate
previous stand conditions (e.g., stand basal area 5 years earlier)
based on tree cores; thus, a timeline of stand attributes, along
with the increment measurement from tree cores, can be used to
fit individual tree models. This approach is applied, for example
by several versions of the ORGANON (ORegon Growth
ANalysis and projectiON) growth model (Hann et al. 2011)
and many variants of the western US’ Forest Vegetation
Simulator (FVS) growth model (Crookston and Dixon 2005).

Another method is to incrementally modify the explanatory
variables of tree vigor and competition (Schröder et al. 2002).

If explanatory variables change slowly over time, errors intro-
duced by not having quantitative backdated measures are neg-
ligible over a short interval. However, large datasets of tree
cores to construct these models are often not available in most
forest inventories, and although alternative approaches have
been developed to model diameter increments, these are much
less accurate (Vanclay 1994).

Limited by the availability of data, most modelling efforts
are quite opportunistic and often commence with any data
available (Weiskittel et al. 2011). In our case, we investigate
the growth and yield ofPinus tabuliformis, a dominant conifer
species native to China which plays an important ecological
role in soil erosion and water protection and on the regional
socioeconomic development (Wu and Feng 1994), with a
wide distribution area and a large altitudinal gradient (Mao
and Wang 2011). In recent years, adequate designs of forest
resource management, in terms of tending, thinning, timber
stand management, and bush management, have been needed
for restoring the degraded forest and reducing the risk of forest
fires. The lack of proper individual tree level growth models
due to data limitations, and the ecological and economic im-
portance of the species was the rationale for our research ef-
forts to provide suitable modelling approaches that could be
used in forest planning related to the species. Thus, we aim to
establish a modelling approach to predict individual tree di-
ameter growth based on one-time observation data from tem-
porary plots, with special focus on the assessment of the ef-
fects on model performance of different data types and the
resulting parametric uncertainty.

2 Materials and methods

We propose a three-stage approach to generate virtual data for
fitting individual tree growth models by linking stand-level
and size-class simulations (Fig. 1). First, we construct a
whole-stand model, and then predict stand-level dynamics.
Second, we simulate diameter distributions using the
Weibull function that is parameterized with observed size-
class structure data. Finally, we use the simulated data to fit
individual tree growth models with Bayesian calibration using
a diameter distribution likelihood. All data used to parameter-
ize models in our study were collected from temporary plots.
We collected one reference dataset of tree cores and one small
dataset of diameter remeasurements to validate our simulated
data modelling approach.

2.1 Study area

Temporary plot data were collected in the Huoditang Forest
(108° 21′–108° 39′ E, 33° 18′–33° 28′ N) and the Xunyangba
Forest (103° 58′–109° 48′ E, 32° 29′–33° 13′ N), in Ningshan
County, Shaanxi, China (Fig. 2). The altitude of all sampling
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sites varied from 1200 to 1800 m, with a slope gradient rang-
ing from 15 to 42°. The dominant soil is a brown forest soil
with an average thickness of about 50 cm. This region has a
subtropical humid mountain climate. The mean annual tem-
perature is 8–12 °C, and the mean annual precipitation is 1100
mm. The primeval forests in this region were harvested during
the 1960s and 1970s. Now most of the area is covered with
secondary forests or plantations.

2.2 Modelling data

The data for model parameterization were collected from 215,
variable-radius plots using angle gauge sampling and 22
square plots with a fixed area of 0.04 ha (Table 1). The basal
area factor of angle gauge sampling is 1 m2 ha−1. This dataset
was provided by the forest resource inventory (1990, 2005,
and 2015); most of which comes from level II forest inventory
in China (Lei et al. 2009). The level II inventory is designed
for forest management planning, while most plots from 1990
and 2005 lack exact coordinates. All data are from temporary
plots established in Pinus tabuliformis plantations from which
only one-time observations were collected (Table 2). One-
quarter of plots were randomly withheld for benchmarking,
while the remaining three quarters were used for model fitting.
Additional data of stem analysis from 11 medium trees across
various site types and conditions were combined with plot
sample data to calibrate the height-age equation in the whole
stand model and the height-diameter equation in the individ-
ual tree model, taking into consideration that stem analysis
data and plot data perform differently in height curve estima-
tion (Perin et al. 2013).

For each size class (4 cm) in each square plot, incre-
ment measures from one or two sample trees were se-
lected randomly, taking two cores in opposite directions
at the breast height. This provided 338 tree cores from
169 trees in the 22 square plots. Increment core data
were processed specifically to validate the individual tree
diameter increment model (Fig. 1). Therefore, individual
tree diameters and stand total basal areas from 5 years
earlier were back-dated based on tree cores and the suc-
cessional stages of snags. Besides the tree cores, another
dataset was also obtained for model validation (Fig. 1).
Trees from 18 of the 22 square plots were remeasured
during 2019. The other four plots were unable to locate
because of inaccurate coordinate records.

2.3 Model simulations

We generated a virtual dataset for fitting an individual tree
model using the following six steps: (1) constructed a
whole-stand model based entirely on temporary plot data,
(2) using this model, we simulated the development of
stand-level attributes for 30, virtual, 1-ha plots from ages 20
to 80 years that include six site fertility classes and five initial
densities (6 × 5 = 30 plots), (3) we constructed a diameter
distribution model based on temporary plot data, (4) using
the diameter distribution model, we simulated the diameter
distributions of virtual plots at 5-year intervals, (5) based on
diameter distributions and stand density, we generated indi-
vidual tree diameters, and finally (6), we simulated 30 virtual
1-ha plots among sites and competition conditions, with 13
((80–20)/5 + 1) measurement times per plot.

Fig. 1 Flowchart of the main processes in the individual tree diameter growth modelling
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2.3.1 Whole-stand model

A whole-stand model that estimates stand average height, per
hectare basal area, and quadratic mean diameter was built and
fitted using temporary plots data. The following basic func-
tions were hypothesized and fit:

hgc ¼ exp α1 þ α2tα3ð Þ ð1Þ

h30 ¼ exp α1 þ lnh−α1

� �
� 30

t

� �α3
� �

ð2Þ

h ¼ exp α1 þ lnh30−α1

� �
� t

30

� �α3
� �

ð3Þ

SDI ¼ N � dg
20

 !α4

ð4Þ

G ¼ α5 � h30
α6 � exp −

α7 � SDI
1000

� �−α8

t

 !
ð5Þ

dg ¼ α9 � h30
α10 � exp −

α11 � SDI
1000

� �α12

t

 !
ð6Þ

N ¼ 40000� G

π� dg
2 ð7Þ

where t is the stand age (years), hgc is the average stand height
in guide curve (m), and h30 is average height at the reference age
(m), of which the reference age is 30 (years) for Pinus

Fig. 2 Locations of the sampling plots. The 90m-DEM (Digital Elevation
Model) was downloaded from the CGIAR-CSI GeoPortal (http://srtm.csi.
cgiar.org). The locations only include plots being established after 2005.

Plots of other datasets were from the same compartments but lacking
exact coordinates
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tabuliformis. h is stand height (m), SDI is stand density index
(trees ha−1), N is stand density (trees ha−1), G is stand basal area

(m2 ha−1), and dg is quadratic mean diameter (cm).
There was a lack of records of dominant trees in previous

inventory datasets. Therefore, the expected stand average

height at the reference age, h30, was used to track site quality.
We assumed that, similar to the widely used site index, the
relationship between stand age and stand average height cor-
relates closely with total stand production and is less depen-
dent on thinning intensity (Eichhorn 1902). Site fertility clas-
sification can also be implemented based on average height
and age relations (von Baur 1876; de Perthuis Laillevault
1803), and this site evaluation method has been widely ap-
plied in Chinese forest inventory since the 1950s. Tree height
growth has been found to be impacted by stand density
(Lynch 1958; Cieszewski and Bella 1993; MacFarlane et al.
2000; Flewelling et al. 2001), and the severity of this impact is
related to species tolerance and site conditions (Weiskittel
et al. 2011). Furthermore, the intensification of thinning from
below can significantly affect the calculation of the stand av-
erage height (Assmann 1970; Pretzsch 2010). Based on this,
the limitation of using average height was not considered as a
severe issue in our study, because thinning was forbidden after
1998 in this region due to the National Forest Conservation
Programme (NFCP) for soil and water protection (Li 2004). A
guide curve of stand average height (Eq. 1) was fitted with the
Bailey–Clutter model (Bailey and Clutter 1974). The equa-

tions of h30 and stand height (Eqs. 2 and 3) were then derived.
Reineke’s (1933) stand density index (SDI), which is

fitted by regression of number of stems (N) and quadratic

mean diameter (dg ) using fully stocked stand observa-
tions, was used to describe competition (Eq. 4). Stand
total basal area (G) model (Eq. 5) and quadratic mean
diameter model (Eq. 6) were modifications of the
Schumacher model (Schumacher 1939), and number of
stems was derived (Eq. 7).

Full-stocked stands were classified using the following
three steps: (1) fit the Reineke’s (1933) equation lnN =

Table 1 Characteristics of the
two types of plot data used in
modelling

Plot type Variable-radius plot Square plot

Investigation year 1989-1990, 2004-2005, 2014-2015 2014-2015

Sample size 215 22

Stand age (year) Min. 15 25

Mean 46 45

Max. 87 73

Stand height (m) Min. 5.0 8.6

Mean 13.4 12.5

Max. 25.0 20.4

Mean diameter (cm) Min. 8.0 12.9

Mean 22.0 17.4

Max. 44.0 24.8

Number of trees per hectare Min. 151 600

Mean 628 1595

Max. 2355 3123

Table 2 Posterior probability distribution of the parameters in the
whole-stand model. The posterior distribution is not analytical and it is
characterized here by the mean values of the parameters, the standard
deviation (SD), and themaximum a posteriori estimates (MAP). The prior
was set as independent uniform distributions, of which the maxima and
minima are listed

Parameters Prior Mean SD MAP

α1 (− 100, 100) 4.1543 0.3513 4.2016

α2 (− 100, 0) − 6.1392 0.3391 − 5.8887

α3 (− 100, 100) − 0.3743 0.0659 − 0.3488

α4 (0, 10) 1.5928 0.1221 1.6080

α5 (0, 100) 21.1022 5.7949 21.5691

α6 (− 10, 100) 0.2248 0.1236 0.2086

α7 (0, 100) 6.9665 2.0722 6.6053

α8 (0, 10) 2.0750 0.3157 2.0297

α9 (0, 100) 30.3612 3.6852 32.0450

α10 (− 10, 100) 0.0593 0.0518 0.0107

α11 (0, 100) 20.0725 1.5733 20.1571

α12 (0, 10) 0.0371 0.0602 0.0305

γ1 (− 100, 100) − 1.0195169 0.2944 − 1.2737

γ2 (− 10, 10) 1.0307536 0.2443 0.9113

γ3 (− 10, 10) 0.2815911 0.0796 0.3956

γ4 (− 100, 100) − 0.3399967 0.1129 − 0.3833

γ5 (− 10, 10) 1.6498416 0.0356 1.6916

γ6 (− 10, 10) − 0.7033391 0.03290 − 0.7150
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λ1 + λ2 lndg with all stand observations, (2) drop all
points that fall below this regression line and repeat the
regression, and (3) drop all points falling below the new
regression line. The remaining was considered fully
stocked. We also validated this method with local stock
tables of “normal” stands.

This whole stand model was chosen because it can be fitted
with temporary plots, although, it may be biased depending on
the data distribution: the range of site fertility classes, and
stand densities must be covered in all age classes. This model
system was used for generating variable-density yield tables
with given SDI values but not sufficient for simulating a spe-
cific real stand. Therefore, when using this whole-stand mod-

el, we set the SDI and h30 manually and then ran the dg andG
equations (Eqs. 5 and 6) to estimate the dynamics of the virtual
stands.

2.3.2 Diameter distribution model

TheWeibull distribution was used to characterize the diameter
distribution. This probability density function is calculated as:

f x;β1;β2;β3ð Þ ¼ β3

β2

� �
x−β1

β2

� �β3−1

exp −
x−β1

β2

� �β3

" #
ð8Þ

where β1, β2, and β3 are the location, scale, and shape
parameters of Weibull distribution, respectively, and x is
tree diameter at breast height. We used a moment-based
parameter recovery method to calculate scale and shape
parameters from quadratic mean diameter and diameter
variance. The regression equation of diameter variance
is:

Dvar ¼ exp γ1 þ γ2lndg þ γ3lnG
� �

ð9Þ

whereDvar is diameter variance. The location parameter β1,
lower limit of x, was similarly set as:

β1 ¼ exp γ4 þ γ5lndg þ γ5lnG
� �

ð10Þ

Parameter γis was obtained by maximum likelihood esti-
mator regression (Cao 2004). The β2 and β3were recovered
by:

β2 ¼ −β1G1=G2 þ β1=G2ð Þ2 G1
2−G2

� �þ D2=G2

h i0:5
ð11Þ

β2
2 G2−G1

2
� �

−Dvar ¼ 0 ð12Þ

where Gi is Γ(1 + i/β3); Γ(∙) is the complete gamma func-
tion. The diameter distribution model was developed using
only square plot data because the size-class information of
variable radius plots was inadequate.

2.4 Individual tree diameter model

An individual tree model simplified from Pukkala et al. (2009)
was fitted using Bayesian calibration and simulated virtual
data. This model system includes a distance-independent di-
ameter growth, survival, and height prediction models:

id ¼ exp c1 þ c2G>d þ c3lnGþ c4
ffiffiffi
d

p
þ c5d2 þ c6h30

� �
ð13Þ

p ¼ 1

1þ exp − c7 þ c8
ffiffiffi
d

p þ c9G>d
� �	 
 ð14Þ

h ¼ c10 þ c11h30
1þ c12=dð Þ þ c13=d2

� � ð15Þ

where idis 5-year diameter increment (cm), G>d is basal
area in larger trees (m2 ha−1), G is stand total basal area (m2

ha−1), d is individual tree diameter at breast height (cm), h30
represents site fertility class (m), p is the probability to survive
for the coming 5 years, h is individual tree height (m).

The virtual data simulated in this study were designed for
the diameter increment and survival models. The ingrowth
model was deliberately omitted because of ingrowth
stochasticity in pure, even-aged Pinus tabuliformis planta-
tions. Therefore, recruitment was assumed to be null. The
height projection model is static and can be fitted separately
from the diameter increment and survival equations.

2.5 Parameter estimation and uncertainty analysis

The Bayes’ theorem offers an approach for updating distribu-
tions, and can be applied repeatedly when new data are avail-
able. In its simplified notion, this theorem states:

p θjDð Þ∝p Djθð Þ � p θð Þ ð16Þ

where p(θ|D)and p(θ) are the posterior and prior distribu-
tion for the parameters θ, respectively, and p(D| θ) is the like-
lihood function, which is the probability of the data D for a
given θ. For the first calibration of physiological process-
based model (e.g., Van Oijen et al. 2005), prior distribution
information is usually based on best guesses or published
values. In this study, empirical model parameters have no
physiological meaning. Thus, vague priors were used for the
first calibration. Parameters were assumed as independent uni-
form distributions, of which the minima and maxima are
shown in Tables 2, 3, and 4.

Because multiple sources of data were used in the Bayesian
calibration, the likelihood function was decomposed based on
the assumptions of independent errors. For example, the cal-
ibration frame of height model (Eqs. 1 and 15) was:

p θjDð Þ∝p DVRjθð Þ � p DSPjθð Þ � p DSAjθð Þ � p θð Þ ð17Þ
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where DVR, DSP, andDSA are observations from variable-
radius plots, square plots, and stem analysis respectively. A
heavy tailed likelihood probability density function (Sivia and
Skilling 2006) was used:

p Djθð Þ ¼ ∏n
i¼1

1

σi
ffiffiffiffiffiffi
2π

p 1−exp −Ri
2=2

� �
Ri

2

� �
ð18Þ

where σiis the noise-scaling factor; a measure of the uncer-
tainty of random error of the ith observation. Ri is the residual
for the ith datum and prediction, divided by σi.

Data from variable-radius plots, square plots, and stem
analyses were not mixed since the noise-scaling factor, σ,is
different for each dataset. For each data type, a linear rela-
tion between error and prediction was established as
σmn ¼ am �bymn þ bm, where bymn is the nth prediction of
dataset m. Parameters a and b were calibrated along with
parameters θ.

A special likelihood function modified from Pukkala et al.
(2011) was used to simultaneously fit individual tree diameter
growth model and survival model:

p Djθð Þ ¼ p E ¼ D−M θð Þð Þ ¼
∏K

k¼1∏
J k
j¼1∏

I j
i¼1 φ GD

jk dijk
� �

−GM
jk dijk
� �

; 0;σGijk
2

� �
�φ FD

jk dijk
� �

−FM
jk dijk
� �

; 0; σF
ijk

2
� �h i

ð19Þ

where θ is the set of coefficients of the individual tree
models,K is number of plots, Jk is the number of measurement
intervals of plot k, Ij is number of 4-cm diameter classes in
measurement interval j of plot k, φ denotes a Gaussian prob-
ability density function with a given mean and variance,

GD
jk dijk
� �

and GM
jk dijk
� �

are, respectively, cumulative basal

area (m2 ha−1) of data and prediction at diameter dijk (upper
limit of diameter class i) at the end of measurement interval j
of plot k, and FD

jk dijk
� �

and FM
jk dijk
� �

are, respectively, cumu-

lative number of trees per hectare of data and prediction at
diameter dijk at the end of measurement interval j of plot k.

Detailed information on diameter increments and survival
were unavailable from the simulated data because of an iden-
tification problem: we did not specifically know which trees
die or individual tree increments during the 5-year period be-
cause trees in virtual plots were not identified. Thus, diameter
increment and survival models (Eqs. 13 and 14) were fitted
together using the likelihood function (Eq. 19) based on di-
ameter distribution changes. The height prediction model (Eq.
15) was parameterized independently.

Pukkala et al. (2011) used least-squares to balance two vari-
ables at different scales (G and F in Eq. 19) by multiplying the
sum of squared errors of F by 0.0001. However, this choice
could be entirely arbitrary and should be justified. We converted
the objective function of the optimization-based modelling into a
likelihood function. Linear relations between the standard
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deviation and themodel predictions were calculated as σG
ijk ¼ aG

�GM
jk dijk
� �þ bG and σF

ijk ¼ aF � FM
jk dijk
� �þ bF , where param-

eters aG, bG, aF, bF were calibrated together with model param-
eters. Here, two variables,G and F, will have two different linear
relations. In this way, variable error increased with its magnitude
and the likelihood automatically balanced the scales of the two
variables.

Unlike the likelihood function for fitting whole stand mod-
el or the individual tree model, the likelihood for diameter
distribution model was not based on the above assumptions
of error distributions, but on the probability density function
of Weibull distribution:

p Djθð Þ ¼ ∏p
i¼1∏

ni
j¼1

β3

β2

� �
xij−β1

β2

� �β3−1

exp −
xij−β1

β2

� �β3

" #
ð20Þ

where p is the number of plots, ni is the number of trees in
the ith plot, xij is the diameter at breast height of tree j in the ith
plot. The regression equations for Dvar and β1(Eqs. 9 and 10)
were simultaneously fitted while β2 and β3 were recovered
(Eqs. 11 and 12).

The MCMC was simulated, using differential evolution
adaptive Metropolis with snooker updating (DREAMzs),
which runs a few chains in parallel and explores the parameter
space in an efficient way (Laloy and Vrugt 2012; Vrugt et al.
2009). We used the DREAMzs algorithm implemented in the
R package BayesianTools (Hartig et al. 2017; R Development
Core Team 2017). When using unanalytical joint posterior
distribution as the prior for a recalibration, a multivariate sam-
ple was extracted from the previous MCMC. With this sam-
ple, a multivariate normal density was fitted and used as the
prior for the new calibration.

The MCMC convergence diagnostic (Brooks and
Gelman 1998; Gelman and Rubin 1992) was used to
monitor the convergence in the MCMC output. The mul-
tivariate potential scale reduction factor (MPSRF) was
calculated, based on two MCMC runs, each of which

has three internal chains. The number of iterations was
set based on the complexity of the model and data, rang-
ing from 105 to 107. A large MPSRF means that the
output from all chains is distinguishable, and a notable
difference exists between variance and intrachain vari-
ance. In our study, convergence was diagnosed when
the MPSRF was below 1.05, which is a relatively strict
criterion (Brooks and Gelman 1998).

2.6 Model validation

One-quarter of plot observations were randomly selected
for benchmarking, including the whole-stand, diameter
distribution, and individual tree height prediction models.
The increment core observations and remeasurements
were respectively processed to validate the individual
tree diameter increment equation. For the tree core data,
we back-dated tree and stand attributes to the start of
previous 5-year growth period, to create explanatory var-
iables. The inside bark diameters from 5-year earlier
were calculated for each subject tree by subtracting the
5-year inside bark increment. Bark thicknesses were es-
timated based on the assumption that ratios between out-
side and inside bark diameters were constant over a rel-
atively short, 5-year period (e.g., Pukkala 1989).
Diameter growth rate of each size class was calculated
using increment cores. Tree diameters from 5-years pre-
vious were roughly estimated using estimated growth
rates. From this we obtained the 5-year earlier stand bas-
al area and basal area in larger trees . For the
remeasurements, the interval years were calculated based
on the number of growing seasons, considering that di-
ameter growth mainly occurs in the early summer.
Growth data of 4-, 6- or 7-year interval were linearly
converted to the growth of 5 years.

We used a regression-based equivalence test developed by
Robinson et al. (2005) for model benchmarking. Unlike usual
parametric methods, equivalence tests rely on a null hypothesis
that a model is unacceptable rather than acceptable. The

Table 4 Posterior probability distribution of the parameters in the individual tree survival and height prediction models. The prior was set as
independent uniform distributions, of which the maxima and minima are listed

Parameters Predictor Prior Mean SD MAP

c7 Constant (− 100,100) − 4.6433 0.1467 − 4.7345

c8
ffiffiffi
d

p
(− 10,100) 2.0424 0.0387 2.0652

c9 G>d (− 100,10) − 0.0333 0.0008 − 0.0327

c10 Constant (− 100,100) 48.3936 1.5133 49.9526

c11 h30 (0,100) 2.8640 0.1191 2.9929

c12 1/d (− 10,100) 80.9377 4.0777 85.7924

c13 1/d2 (− 100,1000) 159.8110 58.8020 152.1656
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equivalence test not only compares means but also for checks for
similarity between individual predictions and observations. The
validation strategy suggested by Robinson et al. (2005) followed
the following six steps: (1) subtract mean prediction from com-
ponent predictions, (2) establish regions of equivalence for the
shifted intercept and slope (e.g.,±25%), (3) fit a linear regression
between observations and adjusted predictions, (4) test the inter-
cept for equality by calculating two, one-sided confidence inter-
vals for the intercept and comparing these to the estimated equiv-
alence regions, (5) test the slope for equality by calculating the
two, one-sided confidence intervals for the slope and comparing

to its equivalence regions, (6) accept or reject the hypothesis of
dissimilarity based on whether the confidence interval falls with-
in the equivalence region. TheRmodule “equivalence”was used
to perform the regression-based equivalence test (Robinson
2016). We calculated the minimum percentage that would result
in rejection of the null hypothesis (Froese and Robinson 2007).

The individual tree model and the diameter increment
equation (Eq. 13) were fitted separately by simulated
virtual data, increment core data, and remeasurement da-
ta (Fig. 1). The performance of the core-data-based (CB)
model, remeasurement-based model (RB), and virtual-

Fig. 3 Guide curves of stand average height and joint distributions of parameters in the guide curve equation (Eq. 1) when based on different types of
data. The grey area is the 95% Bayesian credible interval based on parameter uncertainty

Fig. 4 a Development of stand total basal area on different site fertility classes. b Development of stand density with different initial density
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data-based (VB) model was compared at both tree- and
stand-levels. In addition to the equivalence test, mis-
matches between real growth observations and VB model
predictions were quantified by decomposed mean
squared deviation (MSD), which identified causes of
possible large deviations between observations and pre-
dictions (Kobayashi and Salam 2000). As suggested by
Gauch et al. (2003) the MSD was partitioned into three
parts: squared bias (SB), nonunity slope (NU), and lack
of correlation (LC). When comparing observations and
predictions, squared bias means the deviation of means;
nonunity slope is relevant to the slope of linear regres-
sion; lack of correlation means a scatter. In this case, we
expected the mean of model predictions and the mean of
observations to be the same, and the slope of observa-
tions on predictions to be 1. Thus, the data model mis-
match was decomposed as:

MSD ¼ ∑n
i¼1 Xn−Ynð Þ2

N
¼ SBþ NUþ LC ð21Þ

SB ¼ X−Y
� �2

ð22Þ

NU ¼ 1−βð Þ2 ∑
X n−X
� �2

N

0B@
1CA ð23Þ

LC ¼ 1−r2
� �

∑
Yn−Y
� �2

N

0B@
1CA ð24Þ

where X and Y are the means of model predictions (X) and
observations (Y), respectively, β is the slope of the least-
squares regression of Y on X, r2 is the square of the correlation
coefficient, and N is the number of observations.

3 Results

3.1 Whole-stand and diameter distribution models

In the Bayesian calibration process, the joint posterior distri-
bution of parameters is approximated by Markov Chain
Monte Carlo simulation. The mean value, standard deviation,
and MAP (maximum a posteriori probability estimates) of
parameters in the whole-stand model are given in Table 2.
As shown in the model of guide curves, different types of
inventory data resulted in contrasting predictions and joint
parametric distributions (Fig. 3). The performance of the
guide curve estimated from multisource data was similar to
that of the curve based on various-radius plots. However, the
joint posterior distribution of a1 and a3 from multisource dis-
tribution was more similar to the distribution from equation
based on stem analysis, because the likelihood weighted each
dataset automatically based on the estimated error distribu-
tions. Based on the whole-stand model, we simulated the
growth and mortality of 30, 1-ha virtual plots (Fig. 4). These
plantations possessed the characteristics of both relatively
high initial stand basal area (Fig. 4a) and mortality (Fig. 4b),
since no thinning schemes were designed in the virtual plots.

The parameters that predict diameter variance (Eq. 9) and
the minimum diameter (Eq. 10) are given in Table 2. The
diameter distribution changes due to growth and self-
thinning in a medium site and density condition (Fig. 5).
The most prominent changes were tree frequencies in small
size classes, especially at young ages. The minimum diameter
increased over time.

3.2 Individual tree diameter model

The calibrated parameters of the individual tree model are
given in Table 3. Parameter vectors based on simulated
virtual data, increment core method, and remeasurements
were logical and general similar. Compared with the CB
and RB models, the diameter increment predictions of the
VB model were more sensitive to their own diameters
(Fig. 6). The diameter growth rate reached its maximum
at about 15–20 cm for P. tabuliformis. Simulated VB
model was most sensitive to competition variable BAL.
The RB model was most sensitive to the total stand basal
area and site fertility. The standard deviations in Table 3
represented the parametric uncertainty; the standard devi-

ations of parameters for lnTBA and h30 were larger than
those of BAL, which suggests more uncertainty in predic-
tions. Using the parameters’ joint posterior distribution of
the VB model as the prior, we recalibrated the model
using tree cores and remeasurements, which combined
information of both virtual data and real growth observa-
tions in a Bayesian framework (Eq. 16). The parameter

Fig. 5 Development of diameter distribution at different ages. The
probability density functions were for stands with 2000 trees ha−1 initial
density at age 20 and h30 =12 m
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vector of the recalibrated model was somewhat a compro-
mise among parameter vectors of the VB, CB, and RB
models (Table 3).

Survival model coefficients (Table 4) show that the
survival probability increased with increasing diameter
or decreasing competition (Fig. 7). When the diameter
of a tree reached 30 cm, it was unlikely to die in subse-
quent measurement intervals, because the mortality from
senescence and disturbances were not considered in the
survival model. The height prediction model indicated
trees of equivalent diameter are higher in more fertile
sites (Fig. 8), and height uncertainty increases as the
diameter increases.

3.3 Validation of different resolution models

Tests for the intercept only failed to reject the null hypothesis
of dissimilarity in the individual tree diameter increment mod-
el (Table 5). However, tests for the slope failed to reject the
null of quadratic mean diameter prediction function, diameter
distribution function, and individual tree diameter increment
model. The stand-level basal area model showed the best per-
formance in both intercept and slope tests. Since the area of
the square plot was only 0.04 ha, random errors in Weibull
distributions could be large when compared with observa-
tions. The minimum rejection interval of the slope in dbh
frequencies was as large as 80.25% (Table 5), which was

Fig. 6 Comparison of individual tree diameter increment predictions
based on simulated virtual data, increment cores, and remeasurements.
(a The relationships of 5-year diameter increment over diameter, b stand
basal area, c basal area of larger trees (G>d), d and site fertility ( h30,
average height on the reference age). The dotted, dashed, and solid
lines are, respectively, virtual-data-based predictions, increment core
method predictions, and remeasurement-based predictions. Lines were
generated by MAP (the maximum a posterior parameter vector). The
grey area represents the 95% Bayesian credible interval based on

parametric uncertainty of virtual data method. For Fig. 5a, the stand
total basal area is 25 m2 ha−1, the basal area of larger trees is 5 m2 ha−1,
and the h30 is 12 m. For Fig. 5b, the diameter is 20 cm, the basal area of
larger trees is 5 m2 ha−1, and the h30 is 12 m. For Fig. 5c, the diameter is
20 cm, the stand basal area is 35 m2 ha−1, and the h30 is 12 m. For Fig.
5d, the diameter is 15 cm, the stand basal area is 20m2 ha−1, and the basal
area of larger trees is 5 m2 ha−1)
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caused by the randomness of observed diameter distribution
on a limited population. As the difference between virtual data
and increment CB models shows (Fig. 6), equivalence tests
for individual tree diameter increment model also largely
failed to reject null hypotheses of dissimilarity (Table 5).

The virtual data-based individual tree diameter increment
model underestimated the growth of the suppressed trees com-
pared with the tree core observations (Fig. 9a) or

remeasurements (Fig. 9b). The VB model was more sensitive
to the competition variable G>d than the CB and RB models
(Fig. 6c and Table 3). When validated with tree core data, the
MSD of the VB model was as high as 1.92 times of MSD of
the CB mode l (F ig . 10 ) . When va l ida t ed wi th
remeasurements, the MSD of the VB model was as high as
1.38 times of MSD of RB model. The distinction between the
CB and RB model was smaller.

On the individual tree scale, this model-data mismatch
means biased predictions for the highly suppressed trees
(Fig. 9). However, this bias was negligible on the stand-level
growth predictions (Fig. 11). TheVBmodel shows the highest
consistency with the whole-stand model.

4 Discussion

The principles of stand development have long been applied
to model diameter growth, competition, stand structure, and
diameter distribution in forests (Vanclay 1994). With
remeasured data available, more complicated competition var-
iables for modelling detailed individual tree models, such as
FVS (Crookston and Dixon 2005) and ORGANON (Hann
et al. 2011), are possible. Vanclay (2010) reported the feasi-
bility of robust relationships to predict forest growth with
sparse data at the stand level. At the tree level, we have applied
a simple but robust competition index,G>d, to demonstrate the
sensitivity of competition effects on individual tree diameter
growth. The empirical whole-stand and diameter distribution
models were used as constraints to control the bias between
the stand and the tree level. This makes the individual tree
diameter model more reliable to track stand diameter structure
and basal area development.

We used both tree core observations and tree-level
remeasurements to validate the predicted individual tree diam-
eter growth. The VB, CB, and RB models presented some-
what different predictions of diameter increment. The growth
prediction from CB model was not sensitive to stand basal
area, and, on the contrary, the RB model was largely sensitive
to basal area, possibly due to the fact that both tree cores and
remeasurements were from a limited number of plots. The
large uncertainty resulting in the predictions of the RB model
(Fig. 12) indicates that the remeasurement data were unable to
sufficiently constrain the parameter distributions. These diver-
gent results reflected the fact that these three methods sampled
and simulated the stands in different ways. Nevertheless, the
accuracy or biases were primarily dependent on database size,
measurement error, and inventory sampling design rather than
modelling techniques.

One of the greatest problems in using data from temporary
plots is that biases could be easily introduced into the model.
The guide curve method assumes that average site productiv-
ity and site fertility distribution is the same in all age classes. If

Fig. 8 Dependence of the height of Pinus tabuliformis on diameter at
breast height. The solid line, dashed line and dotted line represent trees
on good quality site ( h30 =14 m), median site ( h30 =12 m), and poor site
( h30 =10 m), respectively. The grey area is the 95% Bayesian credible
interval based on parameter uncertainty

Fig. 7 Dependence of the probability that a tree to survives for 5 years
relative to diameter at breast height. The solid line, dashed line and dotted
line represent trees on G>d of 5, 15, and 25 m2 ha−1, respectively. The
stand total basal area is 30 m2 ha−1, and the h30 is 12 m. The grey area is
the 95% Bayesian credible interval based on parameter uncertainty
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this is not the case, the model for stand height (Eq. 1) will be
biased, affecting all other models. In practice, a temporary plot
dataset with the same site fertility distributions in all age clas-
ses is almost impossible. Thus, we combined a small dataset
of stem analysis in the parameterization of height prediction
models by using multiplied likelihood (Eq. 17). Our dataset
contains 237 temporary plots and only 11 trees with stem-
analysis records. The temporary plot data were more represen-
tative, while the stem analysis data were more accurate by
avoiding the biases of changing site distributions. By

calibrating the values of noise-scaling factor σ, the weights
of different datasets were balanced automatically.

The use of the parameter recovery estimator in a Weibull
distribution linked the whole-stand and size-class models. The
estimation of diameter distributions relies on stand-level var-
iables, so variability of individuals will change consistently
with the stand-level growth and mortality. The individual tree
model based on virtual data will also provide consistent pro-
jections with stand-level attributes. This is because model data
were simulated directly from the whole-stand model. This

Table 5 Summary of equivalence-based regression results. Sample size
is denoted by n, and the approximate joint two one-sided 95% confidence
intervals for the intercept β0 and the slope β1 are (C−

β;C
þ
β Þ, the intercept

interval of equivalence (I−β; I
þ
β ) for intercept and slope are, respectively,

y� 25% and 1±0.25. F (8, 9,10) means frequency in specific size class,
which were predicted using diameter distribution model (Eqs. 8, 9, and
10)

Variable (Equation) n Confidence interval Indifference region Reject dissimilarity? Min. rejection interval

C−
β Cþ

β I−β Iþβ

β0 hgc (1) 59 12.61 14.47 9.73 16.21 Yes 11.57%

G (5) 59 21.61 23.97 17.13 28.54 Yes 5.36%

dg (6) 59 19.85 21.73 14.68 24.46 Yes 11.04%

F(8,9,10) 53 2.25 2.96 2.11 3.51 Yes 19.93%

id(13) 169 1.64 1.81 1.05 1.75 No 29.29%

h (15) 130 15.71 16.93 13.76 22.94 Yes 15.32%

β1 hgc (1) 59 0.92 1.22 0.75 1.25 Yes 20.07%

G (5) 59 0.82 1.10 0.75 1.25 Yes 19.24%

dg (6) 59 0.96 1.28 0.75 1.25 No 29.89%

F(8,9,10) 53 0.20 0.67 0.75 1.25 No 80.25%

id(13) 169 0.52 0.65 0.75 1.25 No 46.54%

h (15) 130 0.76 0.97 0.75 1.25 Yes 22.56%

Fig. 9 Simulated and observed 5-year individual tree diameter increments. Comparisons between the virtual-data-based model and a tree cores or b
remeasurements
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could be a distinct advantage when model users are concerned
about accumulated error from aggregations of tree-level pro-
jections. However, systematic errors of whole-stand and di-
ameter distribution models are also passed on to the individual
tree model. In contrast, tree core–based individual tree models
were developed independently of other models’ resolution.

Thus, the CB model provided more reliable, tree-level projec-
tions that were well matched with tree core observations.
However, the models that rely on tree cores or remeasurement
may also provide unrealistic projections of stand-level attri-
butes because changes in stand-level variables are not

Fig. 10 Decomposed mean squared deviation (MSD) between predic-
tions and the observations of a tree cores or b remeasurements. VB =
virtual-data-based individual tree diameter growth model; CB = core-

data-based individual tree diameter growth model; RB =
remeasurement-based individual tree diameter growth model

Fig. 12 Posterior uncertainty of predictions from three diameter
increment models, by 3000 runs of each model. The diameter of the
objective tree is 15 cm, the stand basal area is 30 m2 ha−1, basal area in
larger trees is 10 m2 ha−1, and the h30 is 12 m. Violin plots represent the
density estimates of predictions from minimum to maximum values. The
boxplots and white points at the median represent the quartiles of
distributions. VB = virtual-data-based individual tree diameter growth
model; CB = core-data-based individual tree diameter growth model;
RB = remeasurement-based individual tree diameter growth model

Fig. 11 Comparison of basal area predictions between the whole-stand
model and individual tree models. Initial states of 100 plots were
randomly selected as input, and the stand total basal area after five
years were respectively predicted by the whole stand model and three
individual tree models. VB = virtual-data-based individual tree diameter
growth model; CB = core-data-based individual tree diameter growth
model; RB = remeasurement-based individual tree diameter growth
model
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simulated directly but aggregated from tree-level projections
(Ritchie and Hann 1997). In our case, the VB and CB models
performed similarly in stand level simulations and were con-
sistent with the whole-stand model predictions. However, the
risk in the aggregation was revealed in the RB model. Several
approaches can be used to modify stand-level projections by
linking stand- and tree-level models. These include disaggre-
gating and allocating stand-level growth and mortality into
individual trees (e.g., Clutter and Allison 1974; Qin and Cao
2006), estimating multiresponse parameters to optimize tree-
level predictions at multilevels (e.g., Zhang et al. 1997; Cao
2006) and using a composite estimator to joint estimates of
stand- and tree-level models (e.g., Yue et al. 2008; Zhang et al.
2010).

With the optimization-based modelling method of Pukkala
et al. (2011), we fit the individual tree model by minimizing
the difference between measured and predicted diameter
distributions. de Miguel et al. (2014) also found that this
optimization-based method can solve tree misidentification
and uneven measurement interval problems in individual tree
models. Instead of the optimization algorithm, we chose
Bayesian calibration for fitting models for two reasons; to
quantify uncertainty of parameters and predictions, and to
update models when new data became available.
Considering that the predictions of the VB model were poorly
matched with tree core observations, we recalibrated the mod-
el using the Bayesian calibration framework (Eq. 16). The
posterior distributions of parameters in the VB model were
taken as the prior information. Increment cores and
remeasurements were used to calculate likelihood. The poste-
rior distributions of parameters contained the information
from both the simulated virtual stand and real growth mea-
surements. At the end of this process, the predictions of the
recalibrated model can be thought as a dynamic combination
of the three datasets (Fig. 12). The basal area parameter (lnG)
in the recalibrated model was greater than that in the CB
model (Table 3), which means that the recalibrated model
was more sensitive to the change in stand basal area. It is
important to note that the posterior information of VB model
was not completely converted into the new, prior information
during recalibration. The posterior parameter distributions
cannot be determined analytically. Therefore, we adopted
the multivariate normal distribution, which was only a general
description of the joint posterior distributions, to fit the density
function.

We fit the individual tree diameter growth model and the
individual tree survival model by linking stand-level and size-
class simulations. Another important component, the in-
growth model, was deliberately omitted. This was because
all data were collected from pure even-aged stands, and infor-
mation of ingrowth from temporary plots was very limited. To
validate our method, we used tree cores to backdate the stand
condition from 5 years earlier and then fit another individual

tree diameter growth model. Theoretically, an individual tree
survival model could be constructed based on the backdated
information. However, the exact time of tree death could not
be estimated because of small age differences among trees and
unclear deterioration characteristics.

More than two hundred plots were used to calibrate the
whole-stand model. For other more limited cases or areas,
other forms of whole-stand models or diameter distribution
models could possibly be adopted. Vanclay (2010) developed
a set of sample stand–level models that only contained three
parameters and could be fitted with fewer data (even a single
observation) for plantations. A variety of parameter recovery
or parameter prediction methods are also available for simu-
lating diameter distributions (e.g., Poudel and Cao 2013).

5 Conclusions

In this study, we proposed a three-stage modelling ap-
proach to forecast individual tree diameter growth using
limited single observation data. The empirical whole stand
model provides an accurate forecast of basal area develop-
ment at the stand level. Links between the whole-stand
model and diameter distribution model across forest sites
and densities effectively enlarged the database of reliable
stand structure information. This permits Bayesian calibra-
tion to model individual tree diameter without remeasured
data. Our results demonstrated the individual tree diameter
growth model effectively predicts competition at individu-
al tree level; compared with empirical predictions based on
incremental tree core measures, although, the simulated
results seem to underestimate the diameter growth of sup-
pressed trees.

The ultimate goal of constructing stand level models and
diameter distributions is to provide adequate simulated data
and appropriate likelihood functions for the calibration of in-
dividual tree models. Under the Bayesian framework, the pro-
posed individual tree growth model can be updated when data
from increment cores, interval plots or permanent plots are
available, providing more accurate and robust predictions
along time.
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