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Abstract
& Key message This study presents an easy-to-apply variable probability sample design that is an efficient and cost-
effective method to correct for local bias in regional LiDAR-assisted forest inventory estimates. This design is especially
useful for small woodlot owners.
& Context Light detection and ranging (LiDAR)-derived forest inventory estimates are generally unbiased at landscape levels but
may be biased locally. One solution to correct local bias is to use ground-based double sampling with ratio estimation where the
LiDAR estimates form the large sample covariate and the ground plots are used to estimate a correction or calibration ratio.
& Aims Our objectives were to test the performance of different sample strategies, to correct for local bias, and to determine the
most efficient and cost-effective sampling design.
& Methods We compared five sample selection methods and four plot types using simulation. Sample sizes and inventory costs
required to achieve 5% standard error were calculated to assess sampling efficiency.
& Results The results showed that bias can be corrected successfully using a doubling sampling approach with ratio estimation,
and that variable probability selection methods were more efficient than equal probability selection methods. A big basal area
factor (BAF) plot was the most cost-effective on-the-ground plot type.
& Conclusion The most efficient and cost-effective sampling design was list sampling with big BAF plots. This combination can
be used to calibrate LiDAR-derived forest inventory estimates for a variety of forest attributes.

Keywords LiDAR-assisted inventory . Variable probability sampling . Big BAF sampling . Ratio estimation . Sampling with
covariates . Sampling to correct
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1 Introduction

Airborne light detection and ranging (LiDAR) scanning
(ALS) is a remote sensing technique that can provide three-
dimensional spatial information about forest canopies and the
underlying terrain. Based on this information, ALS is used to
produce estimates of forest attributes, such as tree height, di-
ameter, crown width, and volume (Næsset 2002; Corona and
Fattorini 2008; Asner et al. 2011; Hayashi et al. 2015). These
estimates are commonly referred to as Enhanced Forest
Inventory (EFI) in Canada (Canada 2013).

In New Brunswick, the provincial government is in the
process of producing freely available EFI estimates for the
entire province (Dick 2019). The advantage of EFI is that it
provides high-resolution spatial forest inventory estimates
across the landscape (Andersen et al. 2011). However, these
estimates are derived from relative sparse ground data sets that
may have questionable sample selection properties; as a result,
although landscape-level estimates may be unbiased, there is
no evidence that these estimates are accurate and unbiased for
smaller forest areas within the forest zone covered by EFI
(Hayashi et al. 2015). The need to evaluate and potentially
calibrate these estimates is required to assure appropriate for-
est management decisions are made on a local basis.

Localized bias can arise due to differences in past manage-
ment treatments, microsites, and disturbance regimes, which
can all produce substantial differences in stand structure and
area-based forest attributes (Clutter et al. 1983; Oliver and
Larson 1996). The high spatial resolution provided by EFI
may connotate an accuracy that is not realized on the ground.
Evaluation and calibration of these estimates is required to
make appropriate forest management decisions on a local
scale. One solution is to locally calibrate EFI estimates using
a sampling with covariates approach (Iles 2003, p. 443;
Kershaw et al., 2016, pp. 343–353).

Sampling with covariates (Kershaw et al., 2016, pp. 343–
353), double sampling, or “sampling to correct” (cf. Iles 2003,
p. 443) is a widely use sampling approach. It is different than
small area estimation where models are built for target areas
with limited sample observations (Goerndt et al. 2011). With
sampling with covariates, EFI estimates for the target area are
used as the “large” sample and a “small” subsample of ground
plots is obtained to correct EFI estimates. The sampling pro-
cess is separated into two components. First is the sample
selection method. In practice, systematic sampling is most
common, since sample points can easily cover the target area
(Freese 1962; Payandeh and Ek 1971; Iles 2003, pp. 171–
182). However, applying variable probability selection
methods, where selection probabilities are dependent on pa-
rameters of interest (e.g., EFI volume or biomass estimates),
has potential to be a more efficient sampling strategy (Basu
1969). The second component is the sampling unit (plot type).
Fixed area plots and horizontal point samples are common in

North America (Kershaw et al., 2016 Chap.9). Controlling the
number of trees per plot results in trade-offs between increas-
ing variability between plots (i.e., increasing required sample
sizes) and decreasing time spent on each plot (Freese 1961;
Gambill et al. 1985; Lynch 2017; Yang et al. 2017).
Probabilistic subsampling for detailed tree measurements
can improve sample efficiencies in many situations
(Grosenbaugh 1979; Bell et al. 1983; Iles 2003, pp. 564–
565; Marshall et al. 2004; Kershaw et al., 2016; Yang et al.
2017).

This paper explores the efficiency of different sample se-
lection methods and different plot types on developing cost-
effective and locally calibrated LiDAR-assisted inventories
for small woodlots. The specific objectives include the follow-
ing: (1) assessment of bias calibration; and (2) assessment of
sampling efficiency, required sample sizes, and associated in-
ventory costs of different sample selection method × plot type
combinations.

2 Material and methods

2.1 Study area

The study area was the 80-ha Femelschlag Research Site on
the Noonan Research Forest (NRF; N 45°59′12″, W 66°25′
15″), managed by the University of New Brunswick’s Faculty
of Forestry and Environmental Management in New
Brunswick, Canada. The NRF has a permanent grid of big
BAF sample plots (BBAF) located on a North-South/East-
West grid at 100-m spacing. The forest inventory is conducted
every 10 years, with the inventory used in this study collected
in 2012. The count BAF was 2 M (i.e., each tallied tree rep-
resented 2 m2 ha−1) and the measure BAF was 27M. For each
count tree, diameter at breast height (DBH, nearest 0.1 cm),
status (live/dead), and species were measured and recorded.
On the measure-trees, total height (HT, nearest 0.1 m) was
measured. There were 1735 count trees and 100 measure-
trees recorded on the 83 sample points contained within the
Femelschlag Research Site.

The Femelschlag Research Site was established in 2014
with 83 fixed area plots (FAP) established on the same plot
centers as the BBAF. The FAPs had a radius of 11.28 m
(0.04 ha), and trees with >= 6 cm DBH were sampled. Tree
species, status, DBH, and HT were recorded for 6252 sample
trees. Table 1 summarizes the plots and tree measurements for
both the BBAF and FAP data.

EFI estimates were provided by the Department of Energy
and Resource Development, New Brunswick. EFI estimates
were derived from ALS collected in 2015. The cell resolution
was 20 m × 20 m, and a total of 2181 cells covered the
Femelschlag Research Site. While EFI provides estimates of
several forest attributes for each EFI cell, only gross total
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volume (GTV, m3 ha−1) was used in this study. The time
differences between data collections and LiDAR estimates
were ignored due to relatively slow tree growth (10–15 rings
per cm) and minor natural or human disturbances in 2012–
2015.

Operationally, aligning field samples with EFI cells will
produce more accurate results. However, because our sam-
pling grid and sample points were established prior to EFI,
we did not have perfect spatial alignment with EFI cells. We
assumed that our grid was a representative sample of the area
around the sample locations. Thus, in the simulation, each EFI
cell was assigned one of the 83 sample points based on dis-
tance between cell center and sample point location. This will
add variability to our results but also will demonstrate the
power of sampling with covariates.

2.2 Field sample point selection

In this study, the large sample was EFI cells and five sample
selection methods were considered to select the small sam-
ples: (1) simple random sampling (SRS); (2) spatial systemat-
ic sampling (SYS); (3) systematic ordered-list sampling
(SOL); (4) sampling with probability proportional to predic-
tion (3P); and (5) list sampling (LIST).

SRS and SYS are two equal probability selection methods
that are frequently used to select both large and/or small sam-
ples in double sampling. SYS is typically applied spatially, but
can be applied to ordered lists of factors (Iles 2003, p. 176).
The idea of SOL is to sort sample units from small to large by
their covariate (i.e., GTV), then select sample units at a regular
interval across the covariate range. Since SOL ensures equal
distribution over the covariate range, it may provide a more
efficient double sampling scheme than either SRS or SYS
(Iles 2003, pp. 171–174).

3P and LIST are two variable probability selection
methods. 3P was introduced by Grosenbaugh (1964, 1965).

Following Iles’ (2003, pp. 450–451) procedure, a cruiser pre-
dicts (or estimates) an attribute related to the variable of inter-
est for each individual in the population (tree, plot, ALS cell,
etc.), and compares this prediction to a uniform random num-
ber drawn from the expected range of predictions. If the pre-
diction ≥ the random number, then the individual is measured.
Although the sample size in 3P cannot be precisely controlled,
Iles (2003) suggested controlling the range of random num-
bers to obtain the desired sample size. The maximum random
number, KZ, is calculated using:

KZ ¼ K
p
¼ K⋅

N
n

� �
ð1Þ

where K = the expected value (mean) of the predictions; p =
proportion of population to be sampled; N = population size;
and n = desired sample size. In our application, since the EFI
values are known and sample selection can be performed in
advance, the number of units selected will be known in ad-
vance of field work despite being a random variable.

LIST is based on the probability proportional to contribu-
tion to the population total. In this procedure, as illustrated by
Kershaw et al. (2016, pp. 353–356), the listed covariate (GTV,
in this study) of sample units is firstly cumulated across the
whole population. A sample unit is selected if a random num-
ber drawn between 0 and the total accumulation lies within the
range of the cumulated sums. Thus, a sample unit that has a
larger covariate will have higher probability of being selected
and measured in detail. With LIST, the exact number of units
selected is controlled and known in advance of field work.

2.3 Plot compilation

For each of the 83 sample points, FAP and BBAF data were
available. To further explore the performance of tree subsam-
pling within plots, four sample tree selection systems (plot
types) were considered in this study: (1) fixed area plots with

Table 1 Minimum, average, and
maximum of number of trees per
plot, number of species per plot,
number of trees per ha (density),
basal area (BA, m2 ha−1),
diameter at breast height (DBH,
cm), and total height (HT, m) for
fixed area plots (FAP) and big
BAF sample plots (BBAF) data

Parameter FAP BBAF

Min. Mean Max. Min. Mean Max.

Number of trees (per plot) 23 75 175 12 21 31

Number of species (per plot) 2.0 5.4 8.0 2.0 5.2 8.0

Density (stems/ha) 575 1883 4375 457 1870 4233

BA (m2 ha−1) 21 40 54 24 42 62

DBH (cm) 6.0 14.5 69.0 6.0 22.9 79.9

HT (m) 3.1 12.0 33.4 – – –

Measure-trees (per plot) – – – 0 1.2 5

Number of measure species (per plot) – – – 0 1.0 3

Measure DBH (cm) – – – 6.4 25.4 69.4

Measure HT (m) – – – 3.6 16.4 24.5
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all trees measured (FAP); (2) fixed area plots with 3P subsam-
pling of measured trees (3PN); (3) horizontal point samples
with all trees measured (HPS); and (4) big BAF sample plot
(BBAF).

The 3PN was simulated using the FAP data. Height pre-
dictions, based on a height-diameter model (MacPhee et al.
2018), were compared with uniform random numbers be-
tween 0 and KZ (Eq. 1). If the predicted height ≥ the random
number, the measured tree height would be used. The desired
tree sample size (n) was set at the same level of effort as
observed in the big BAF samples (n = 100 trees across the
83 field plots). KZ (Eq. 1) was calculated using average pre-
dicted height (K = 11.51 m), and N = 6252 sample trees.
Volume per ha (m3 ha−1) for a full FAP plot was calculated
by estimating total volume for each tree using the measured
DBH, HT, and Honer et al.’s (1983) metric volume equations,
and then summing over all trees on the plot andmultiplying by
the expansion factor (25 for 11.28-m radius FAP). For the
3PN plots, the mean ratio of measured HT to predicted HT

(RHT ) for all measure trees was calculated and multiplied by
each predicted HT, and the adjusted HTs and measured DBHs
were used to estimate volume using the same process used on
the full FAP.

To expand the BBAF data to represent HPS data, the NRF
height-diameter model (MacPhee et al. 2018) was used to
predict HT on all count trees. Volume was then estimated
using Honer et al.’s (1983) metric volume equations and mul-
tiplied by each tree’s associated expansion factor (varies with
tree DBH) and summed to obtain volume per ha (m3 ha−1) for
each sample point. For the BBAF, volume and volume to
basal area ratio (VBAR) were calculated for each measured
tree across the entire sample, and the mean VBAR was then
multiplied by each plot’s basal area per ha (m2 ha−1) to esti-
mate volume per ha (m3 ha−1) for each sample point (Iles
2003, pp. 314–322, 564–565; Marshall et al. 2004). The EFI
GTV values and the four different plot-level summaries are
archived in the University of New Brunswick’s DataVerse
data archive (Hsu and Kershaw 2020).

2.4 Sample simulation

As described above, EFI cells formulate our large sample of
covariates and we will select a smaller subsample of these
cells to obtain simulated field measurements. Sample sizes
between 10 and 50, in steps of 5, were simulated for each of
the five sample selection methods and each plot type was used
at each selected cell. Each sample selection method × sample
size was simulated 100 times. Sampling was conducted with-
out replacement except for LIST which, as typically imple-
mented, was conducted with replacement (Freese 1962;
Kershaw et al., 2016, pp. 353–356). Preliminary analyses
showed that the GTV for our study area did not have

appreciable bias (approximately 2–9%, depending on plot
type) relative to the field plots (bias = cell GTV – Field
Volume). To test our hypothesis that sampling with covariates
and ratio estimation can be used to correct bias in EFI cells and
to provide meaningful comparisons between different sample
design combinations, we added multiplicative biases into each
EFI cell by generating random numbers between 1.05 and
1.15 for 10% bias and 1.15 and 1.25 for 20% bias (the adjust-
ment was in one direction because we were testing effects of
bias, not error). All sample simulations were carried out in the
R statistical program (R Development Core Team 2019).

2.5 Sample compilation

In this study, ratio estimation (Freese 1962; Iles 2003, pp.
314–322; Kershaw et al., 2016, pp. 351–353) was used to
calibrate (or correct) GTV using the small sample field vol-
ume estimates (VOL). Ratio estimation can be considered
within either a design-based or a model-based framework
(e.g., Gregoire 1998; Magnussen 2015). Here, we choose
the model-based (or model-dependent) approach. Because
GTV is expected to be very similar to VOL, the relationship
between GTV and VOL should be linear and pass through 0.
For the ith selected EFI cell in the jth replicate sample in the
kth sample design combination (sample selection method ×
plot type × sample size), the VOL to GTV ratio (Rijk) was
calculated using:

Rijk ¼ VOLijk

GTVijk
ð2Þ

where VOLijk = field estimated volume using one of the four
plot types; and GTVijk = the GTV of selected EFI cell. The

mean ratio (Rjk ) was then calculated for the jth replicate sam-
ple in the kth sample design combination:

Rjk ¼
∑
m

i¼1
Rijk

mjk
ð3Þ

where mjk = the number of samples. We note that under the
design-based approach, different estimators of the population
mean would be necessary, depending on the selection proba-
bilities of the individual cells under the design (Thompson
2012 Chap. 7). From a model-based perspective, the sampling
probabilities are irrelevant so long as selection is
“noninformative” in that it is not influenced by the residual
value itself (e.g., Chambers and Clark 2012); a single estimat-
ing equation can be used, depending on the characteristics of
the error term for individual cells. For further discussion on
noninformative samples in forest inventory, see Magnussen
(2015). Equation 3, a mean-of-ratios estimator, is the
minimum-variance model-unbiased estimator when the resid-
ual variance is proportional to GTV2, or the residual standard
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deviation is proportional to GTV (Brewer 1963). Adjusted
GTV (VOLijk ) was then obtained using:

VOLijk ¼ Rjk⋅GTVi ð4Þ

The mean adjusted GTV (VOLjk ) was then calculated as:

VOLjk ¼
∑
N

i¼1
VOLijk

N
ð5Þ

The overall error of the sample can be considered from two
different perspectives. If we view the LiDAR-derived GTV as
a random variable associated with its own standard error, then
overall sample error can be calculated using Bruce’s formula
(Iles 2003, p. 588; Marshall et al. 2004; Kershaw et al., 2016,
p. 380) as derived from Goodman (1960):

se% VOLjk

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se% Rjk

� �2
þ se% GTV

� �2
r

ð6Þ

where se% VOLjk

� �
= the percent standard error of the mean

adjusted GTV; se% Rjk

� �
= the percent standard error of the

mean ratio; and se% GTV
� �

= the percent standard error of
the mean original GTV. The percent standard error was cal-
culated using:

se% X
� �

¼ 100⋅
s Xð Þ= ffiffiffiffi

m
p

X

� �
¼ CV Xð Þffiffiffiffi

m
p

� �
ð7Þ

where X = R or GTV; X = R or GTV (averages); s(X) = stan-
dard deviation of X, m = sample size; and CV(X) = coefficient
of variation of X. The use of Eq. 7 for R conforms to the usual
treatment of the plots as independent estimates. However, for
GTV, one might argue that ignoring spatial autocorrelation

leads the resulting se% GTV
� �

to be a slight underestimate.
On the other hand, a strong case can be made that the LiDAR-
derived GTV, for a given property and a given LiDAR col-
lection, is a fixed value and that randomness only enters
through variation in the VOLijk of the individual sampled

cells. In that case, the term se% GTV
� �

in Eq. 6. equals zero,
and spatial autocorrelation becomes a non-issue. Ignoring spa-

tial autocorrelation, se% GTV
� �

calculated using Eq. 7 is

about two orders of magnitude smaller than se% Rjk

� �
in all

cases studied, such that se% VOLjk

� �
is identical to within 5 or

6 decimal places. Even with a generous allowance for spatial
autocorrelation (e.g., an increase of an order of magnitude),

the influence of se% GTV
� �

on se% VOLjk

� �
is negligible and

can hardly be represented meaningfully or discerned in graph-
ical or tabular presentation of the results; it is certainly too
small to be of management importance, so we consider it no
further and use Bruce’s formula (Eq. 6) in all analyses pre-
sented here.

2.6 Data analyses

2.6.1 Sample design effects

Effects of different sample design combinations on the distri-
butions of VOLjk and se% VOLjk

� �
were examined using horizon-

tal error bar plots and bean plots (Kampstra 2008), respective-
ly. To assess overall sampling efficiency and determine the
variance contributions of selection methods and plot types, a
nonlinear mixed effects model was fitted:

se% VOLk

� �
¼ b0

mb1
ð8Þ

where m = sample size; and bi = regression coefficients.
Random effects were fitted using sample selection method
and plot type nested within sample selection method to both
coefficients. With the use of Eq. 8, minimum sample size
requirements were determined for the 5% error level, and the
design effect (Särndal et al. 1992) was calculated using:

DEst ¼ m5%;s

m5%;t
ð9Þ

where DEst = the design effect between sample design s and t;
and m5%, i = the sample size requirement to achieve 5% error
from sample design s or t.

2.6.2 Influence of cost constraints on optimal sample design

A field survey design usually needs to consider both statistical
efficiency and time or cost (Smith 1938). Both Lynch (2017)
and Yang et al. (2017) showed that optimal sample design
varies in relationship to cost constraints. Building upon the
work of Lynch (2017), Yang et al. (2017) expressed total
inventory cost as the sum of overhead costs (e.g., the planning,
preparation and compilation), total measurement costs
(CMeas), and plot-to-plot travel costs (CTravel). Overhead costs
are fixed. CMeas is composed of plot establishment costs, tree
identification costs, and tree measurement costs:

CMeas ¼ CP þ k⋅E c½ �⋅mþ r⋅M ð10Þ
where CP = sample point establishment costs; k = per tree
costs to determine an “in” tree, identify species, and measure
DBH; E[c] = expected number of trees per sample point; m =
required sample size; r = cost to measure other tree attributes
(HT, in this study); andM = the total number of measure trees.
Zeide (1980) estimated travel distance between two sampling

points using a square grid: d ¼ ffiffiffiffiffiffiffiffiffi
A=m

p
(A = total area of forest

in square of units of distance). The equation for CTravel can
then be expressed as:

CTravel ¼ Cd ⋅m⋅
ffiffiffiffiffiffiffiffiffi
A=m

p
¼ Cd ⋅

ffiffiffiffiffiffiffiffi
A⋅m

p
ð11Þ

where Cd = travel cost per meter.
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Given Eqs. 10 and 11, costs for a given sample size and
sample design were estimated. Finally, the design effect was
expressed as a ratio of costs:

DEst ¼ C5%;s

C5%;t
ð12Þ

The inventory costs used in this study were based on an-
cillary data collected on the NRF (Yang et al. 2017): C0 =
1300, Cp = 2.70, k = 0.675, r = 4.41, and Cd = 0.0945 (2015
Canadian dollars). Crew size was assumed constant (two peo-
ple) for all designs.

3 Results

Differences in mean adjusted volumes VOLjk and associated
standard errors across the three bias levels (no bias, 10%, and
20% added bias) were negligible, except for SRS. It is impor-
tant to note the negligible differences demonstrate the efficien-
cy of sampling with covariates to correct for local bias.
However, because of the small differences in results, we only
present results based on 10% bias to illustrate the ability of the
ratio estimation and the efficiency of sampling with
covariates.

3.1 Sample design effects

Figure 1 shows the mean and range of estimated VOLjk by
different sample designs at 10% added bias. Field measured
volume varied by plot type (Fig. 1): FAP averaged 272.8 (±
6.69) m3 ha−1; 3PN averaged 270.5(± 5.78) m3 ha−1; HPS
averaged 247.0 (± 7.97) m3 ha−1; and BBAF averaged 256.2

(± 7.21) m3 ha−1. Although the range of VOLjk for equal
probability selections was greater than the 95% confidence
interval (CI) of 83 field plot measured volumes and greater

than variable probability selections, mean VOLjk for every
combination was close to the mean field measured volume
(Fig. 1), except for SOL. As sample size increased, 3P and

LIST generally produced narrower ranges in estimated VOLjk

than equal probability selection methods (Fig. 1). SOL con-

sistently had the most extreme VOLjk when sample size was
10 (Fig. 1a); however, this difference was minimal as sample
size increased. 3P generally had the smallest range of estimat-

ed VOLjk for most plot types and sample sizes, except LIST
had smaller ranges than 3P for HPS and BBAF plots for sam-
ple size 20 (Fig. 1b).

The se% VOLjk

� �
decreased with increasing sample size

for all sample design combinations (Fig. 2). While all selec-
tion methods produced many sample instances with low

se% VOLjk

� �
, the equal probability methods often produce

extreme values which increased their mean se% VOLjk

� �
. 3P

and LIST had lower mean se% VOLjk

� �
than all equal proba-

bility selection methods. Plots using subsampling methods

(3PN and BBAF) had smaller mean se% VOLjk

� �
than plots

where all trees were measured (FAP and HPS; Fig. 2).
The fixed effects component of Eq. 8 only explained 13%

of the variation in se% VOLk
� �

and the full model including
the random effects explained 19% with an overall root mean
square error of 3.5%. The fixed parameter estimates were as
follows: b0 = 25.0915 (1.98981) and b1 = 0.4223 (0.02181).
The standard errors for the random effects associated with
sample selection method were as follows: s(b0) = 4.2605 and
s(b1) = 0.0431; and those associated with plot type nested
within sample selection method were as follows: s(b0) =
3.0578 × 10−8 and s(b1) = 3.1263 × 10−2. While the model ac-
counts for a small percentage of the variation due to high
variability in some sample designs (especially in SOL), the
results are still informative and useful for sample design
comparisons.

Table 2 shows the combined fixed + random effects coef-
ficient estimates by sample selection methods and plot types.
The b0 is the theoretical population standard deviation, and the
b1 represents the rate of standard error reduction with increas-
ing sample size. Larger b1 represent more efficient designs
while larger b0 represent more variable designs.
Theoretically, b1 should equal 0.5. The b0 of SRS and SYS
were similar; SOL had the largest b0, and 3P had the lowest.
The b0 of LISTwas higher than SRS and SYS. The b1 for SRS
and SYS were usually lower than the ones obtained for vari-
able probability selection methods. The b1 were slightly lower
than 0.5 in general, except for LIST with FAP and 3PN. Based
on the same sample selection method, the use of subsampling
plot types (3PN and BBAF) also had higher b1 than all trees
measured within plots (FAP and HPS).

Table 3 shows the required sample sizes for 5% standard
error derived from Eq. 8. The required sample sizes did not
increase substantially across the different bias levels, except
for SRS. For SRS, the required sample sizes increased propor-
tionally to the bias level increment (Table 3). LIST required
the lowest sample sizes for all plot types and bias levels.
Figure 3 shows the design effect based on minimum required
sample sizes. FAP under SRS and SYS were more efficient
than HPS and BBAF, except when these plot types were se-
lected using 3P or LIST. 3P and LIST for all plot types were
generally more efficient than other selection methods, espe-
cially for the two fixed area plot types (FAP and 3PN). LIST
with 3PN was more efficient than all other sample selection
method × plot type combinations.

3.2 Costs

Unlike the higher sample size design effects (i.e., more sample
efficiency) associated with FAP (Fig. 3), when costs were
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considered, FAP no longer had any positive design effects
except when used with variable probability selection methods
(Fig. 4). As with sample size (Fig. 3), variable probability
selection was more efficient than equal probability designs
(Fig. 4). Subsampling plot types had larger cost-based design
effects than the plot types with all trees measured (Fig. 4). As a
result, the total costs associated with 3PN and BBAF were
much less than FAP and HPS (Fig. 5). Because FAP had more
expected “in” trees per plot than HPS (Table 3), even though
3PN had lower required sample sizes than BBAF (Table 3,
Fig. 3), the costs for 3PN were still higher than BBAF (Figs. 4
and 5).

4 Discussion

In forestry, inventory errors in the 10–20% range are common
and acceptable, while the estimates should be unbiased
(Schreuder et al. 1993; Gregoire and Valentine 2008). Under
the approach of sampling with covariates and ratio estimation,

auxiliary variables which support a sampling process should
not be a source of bias (Iles 2003) as long as the primary
variable (small sample) is unbiased. Typically, bias is less than
5%, and biases in our corrected results ranged from 0.1 to
5.0% (except SOL which bias was around 8% in small sample
size). As a result, bias can generally be corrected using ratio
estimation without substantially increasing sampling effort.
Our results support this opinion, except for SRS (Table 3).
Because SRS does not consider any information about the
population and the added bias increased population variance,
SRS required more samples as bias increased (Table 3). SYS
and SOL, which also are equal probability selection methods,
ensure spatial or distributional coverage across the population
range, and, as a result, the added bias did not have a substantial
impact on sample sizes (Table 3).

In theory, SOL should be more efficient than SRS and SYS
because SOL samples across the population range (Iles 2003,
pp. 175–183). However, in our case, SOL produced the most
extreme volume estimates (Fig. 1) and required more samples
to achieve a given standard error (Table 3, Fig. 2). It is because
the ratios of field volume to EFI volume were calculated using
the nearest field plot and the selected EFI cells were not spa-
tially aligned. A large-valued field plot, coupled with an EFI
cell centered on a small gap or at an edge, can result in a very
large ratio, which could bias the overall average ratio and
subsequent corrected volume estimate. Given that SOL en-
sures sampling across the range of EFI values, these extreme
estimates were more likely due to our data limitations, espe-
cially at the lowest sample sizes (Fig. 1a). At the larger sample
sizes (Fig. 1c, d), SOLwas on par with SYS and slightly better
than SRS.

Most ALS inventory studies align field plots and ALS cells
(White et al. 2013). This was not done here because the field
data sets were established independently of EFI cells.We used
all EFI cells and matched closest field plots, which was pur-
posely done to increase population size (large sample) and
variability for our sample simulations. Despite this, the sam-
pling with covariates and ratio estimation approach was still
robust, and produced unbiased estimates with relatively small,

Table 3 The required sample sizes under 5% sampling error for each combination of sample selection methods and plot types by three bias levels (No
bias; 10% bias, and 20% bias). (Selection method and plot type acronyms are defined in Table 2)

Plot type # trees/plot Selection method

(Total/
meas)

SRS SYS SOL 3P LIST

No bias 10% 20% No bias 10% 20% No bias 10% 20% No bias 10% 20% No bias 10% 20%

FAP 75.3/75.3 43 48 52 49 49 50 57 57 58 27 28 29 25 26 27

3PN 75.3/1.3 39 44 47 43 43 44 53 53 55 23 24 25 22 23 24

HPS 20.9/20.9 61 79 84 76 77 78 72 73 75 47 50 46 44 44 42

BBAF 20.9/1.2 52 63 67 62 63 63 64 64 65 37 39 37 35 35 35

*Total = total number of trees per plot, Meas = number of measured trees per plot

Table 2 Coefficient estimates (fixed + random effects) of the nonlinear
mixed effect model (Eq. 8) for estimating minimum sample size
requirements for the scenario with 10% added bias by selection method
and plot type. (Sample selection methods: SRS = simple random
sampling, SYS = systematic sampling, SOL = systematic ordered-list
sampling, 3P = sampling with probability proportional to prediction,
LIST = list sampling. Plot types: FAP = fixed area plot, 3PN = fixed area
plot with 3P subsampling of measured trees, HPS = horizontal point
sample, BBAF = big BAF sampling)

Selection method b0 b1 (Plot type)

FAP 3PN HPS BBAF

SRS 22.4523 0.3867 0.3976 0.3445 0.3629

SYS 22.5925 0.3879 0.4011 0.3480 0.3654

SOL 32.8344 0.4657 0.4741 0.4395 0.4536

3P 21.9240 0.4479 0.4686 0.3780 0.4043

LIST 25.6546 0.5039 0.5238 0.4337 0.4600
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cost-effective sample sizes. This study demonstrates that it is
possible to use existing ground data that does not exactly align
directly with EFI cells for the purpose of locally calibrating
LiDAR-assisted predictions. The fundamental outcome of this
study is the requirement for an underlying, probabilistic sam-
ple at the second stage (Iles 2003, pp. 314–322). The small
sample enables us to estimate a total, and the large sample
enables us to spread that total over the area of interest
(Freese 1962; Iles 2003, pp. 314–322).

Variable probability selection, which allows sampling with
probability proportional to the variable of interest (Basu 1969;
Iles 2003 Chap.11), minimized extreme value estimates (Fig.
1), reduced overall sample size requirements (Table 3, Figs. 2
and 3), and reduced inventory costs (Figs. 4 and 5). While
West (2017) found that variable probability selection was
not superior to SRS, this study shows both 3P and LIST had
better performance than any of the equal probability selection
methods for all criteria evaluated, similar to the results in
Yang et al.’s (2019) study. It should be noted that West
(2017) only implemented 3P and a variant of 3P that did not

require a census of covariates. In this study, LIST typically
outperformed 3P.

In traditional forest inventory, LIST and 3P methods were
not widely implemented because of the census demands (ei-
ther a priori for LIST or concurrent for 3P). As shown here,
estimates derived from ALS provide suitable lists of covari-
ates for LIST and 3P. Besides the EFI estimated volume used
in this study, covariates extracted directly from ALS point
cloud data (e.g., LiDAR metrics) also can be used (Yang
et al. 2019). Similar to Yang et al.’s (2019) work, Parker and
Evans (2004, 2009) showed that double sampling could be an
effective approach to derive LiDAR estimates for forest and
individual tree attributes, but they only used systematic selec-
tion. Other authors have explored additional sample selection
criteria such as space filling designs (Junttila et al. 2013) and
local pivotal methods (LPM; Grafström et al. 2012; Grafström
and Ringvall 2013). These designs are similar to SOL in that
they attempt to balance sample allocation across multiple spa-
tial and statistical dimensions. Yang et al.’s (2019) results
found that LPM performed as well as 3P and LIST when
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developing forest-level LiDAR-assisted inventories. As spa-
tial scale increases, stratified sampling or cluster sampling
may be more effective (Schreuder et al. 1993; Gregoire and
Valentine 2008). However, even with these designs, the prin-
ciples of variable probability selection can be considered to
select sampling units.

The inventory cost of a sample procedure is influenced by
two factors: (1) required sample size, which is mainly influ-
enced by sample selection methods (Table 3, Figs. 2 and 3);
and (2) the number of “in” trees and measure-trees, which are
dependent on plot types. Sample size generally is the main
factor used to assess sample efficiency. However, because
the spatial extent in this study was only 80 ha, which can be
considered as a stand-level or small woodlot inventory, the
cost for tree measurement is much higher than for traveling
between plots (Yang et al. 2017). Thus, plot type was the
major factor impacting total costs rather than selection
methods. HPS, as a variable probability selection method,
had lower numbers of “in” trees than FAP (Table 3).
Although in our study area, HPS and BBAF required larger
sample sizes than FAP and 3PN, they still had lower costs.
Plot types with subsampling saved much effort in measuring
trees (Table 3). Ratios used in 3PN and BBAF were effective
for reducing variation between individual measurements (Iles
2003, pp. 564–565; Marshall et al. 2004).

5 Conclusion

Our study shows how LiDAR-assisted forest inventory es-
timates can be corrected for localized conditions, and the
potential of using sampling with covariates and ratio esti-
mation. This approach can be applied to not only LiDAR-
assisted estimates but to other remote sensing techniques,
such as satellite data and even ground-based optical sen-
sors (Hsu 2019). And it can be used to estimate any param-
eter of interest, including biomass or carbon content (Chen
et al. 2020). As ALS point cloud data and EFI estimates are
becoming publicly available (especially in Atlantic
Canada), the applications presented in this study become
feasible for both large industrial forest landholders and
smaller private woodlot owners, giving them high-
resolution forest information that is locally calibrated to
support management decisions.
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