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Use of vegetation change tracker, spatial analysis, and random forest
regression to assess the evolution of plantation stand age
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Abstract
& Key message By integrating vegetation change tracker (VCT), spatial analysis (SA), and random forest regression (RF), the
spectral-temporal patterns of forest stand age were mapped for three typical plantations in Southern China. The spectral-temporal
distribution of age structure indicated that the plantation stands in the study area were increasingly aging.
& Context Plantations play a major role in China for ecosystem restoration and carbon sequestration. Mapping plantation stand
age distributions is essential for developing sustainable plantation forest management plans.
& Aims The purpose of this study was to propose two new remote sensing based models for mapping plantation ages and to test
the model feasibility and accuracy in determining the spectral-temporal patterns of forest ages.
&Methods We first integrated vegetation change tracker (VCT) algorithm and spatial analysis (VCT-SA) for the pixels that were
disturbed at least once from 1987 to 2017, and integrated VCT and random forest (VCT-RF) for the pixels were not disturbed
during the study period. Then the forest age of these two parts were merged separately to generate annual forest age.
& Results The spectral-temporal (30-m resolution, from 1987 to 2017) of forest age for the three typical plantations in Lishui were
generated. The results indicated that the plantation stands in our large study area were increasingly aging.
& Conclusion Our results revealed that it is reasonable to derive the distribution of plantation stand ages from combined remote
sensing models. Besides, we confirmed that the stand ages of the plantations in our large study area of Lishui City are on the rise
as the result of forest protection policies.
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1 Introduction

Forests play vital roles in environmental improvement, land-
scape aesthetics, the mitigation of climate change, and determi-
nation of energy budgets (Goulden et al. 2011; Meijaard et al.
2013; Pan et al. 2011a; Poorter et al. 2015). As discussed by
these authors, stable forests have the capacity to meet the social,
economic, ecological, cultural, and spiritual needs of current
and future generations in a sustainable manner. Currently, nat-
ural forests are decreasing, while plantation areas are increasing
on a global scale. By the end of 2018, China had 80 million ha
of plantations, which accounted for approximately 33% of the
world’s total area of tree plantations and represented 36% of the
forested area in China (SFA 2019). Plantation stands are antic-
ipated to increasingly contribute to the world’s supply of wood,
fibre, fuel, and non-timber forest products, as well as the pro-
vision of environmental and social services (Liu et al. 2014).
Particularly, to meet the demands of timber production, short
rotation and fast-growing plantations were principally created
in Southern China due to its abundant precipitation, ample sun-
light, and excellent soil fertility conditions (Zhou et al. 2011).
Forest age, which reflects the past disturbance legacy, is an
essential factor for quantifying harvesting potentials (Verkerk
et al. 2011) and long-term forest carbon sequestration potentials
(Poorter et al. 2016; Zhang et al. 2017). It can also be employed
as an indicator for the assessment of biodiversity, recreation
attractiveness, and disturbance risks (Payette and Frégeau
2019; Seidl et al. 2018). In Southern China, forest management
activities have resulted in shifts of forest ages via frequent forest
logging and post-harvesting recovery events. Therefore, reli-
able historical forest age structures are required to improve
the modelling of forest carbon balances (Juutinen et al. 2018;
Thom and Keeton 2019) and to quantify additional manage-
ment measures.

Traditional methods for collecting forest parameters are
based on a plot sampling design such as simple random or
systematic sampling where the tree heights and diameters
on the selected plots are measured using a variety of field
instruments. Obviously, this manner of forest data collec-
tion is time-consuming, labour-intensive, and costly over
large terrestrial regions (Almeida et al. 2019). In addition,
this method is impossible or extremely costly to imple-
ment due to poor accessibility such as when measuring
forests on very steep slopes in remote areas with poorly
maintained or insufficient access roads (Wiggins et al.
2019). However, satellite remote sensing technique can
overcome these limitations and provides a systematic
means for the broad area spatially explicit estimation of
biophysically essential variables. A considerable number
of investigations have demonstrated that multispectral re-
mote sensing imagery is a useful tool for discriminating
the age of forests (Thom and Keeton 2019; Wunderle
et al. 2007).

Conventional remote sensing based on forest age estima-
tion approaches tend to examine spectral reflectance and tex-
ture analysis by employing a combination of shape, size, and
spectral data to estimate forest as a class rather than as an exact
forest age (Kayitakire et al. 2006; Nilson and Peterson 1994).
The underlying physical mechanism for such approaches lies
in the fact that different light reflectance and transmittance
regimes of canopy structures and image texture vary from
forest stands with different optical properties of species, tree
branch, leaf, bark, trunk and cones (Zhou 2003). Canopy re-
flectance is a product of competing mechanisms of light ab-
sorption (Roberts et al. 1998). Chlorophyll concentrations in-
crease with forest age which affect the multiple scattering of
light in the canopy (Croft et al. 2014; Kokaly et al. 2003).
Also, with increasing forest age, the image texture changes
in forest canopies from a uniform style to a clumpy pattern.
This enables the development of associations between the
characteristics of canopies and age (Cohen et al. 1990;
Cutler et al. 2012).

Within such conventional estimation analyses, statistical
models, such as multivariate (linear) regression (Chen et al.
2012a), artificial neural networks (Chen et al. 2012b), sup-
port vector machines (Kauffman and Prisley 2016), regres-
sion tree algorithms (Shataee et al. 2012), and recently
used random forests (Healey et al. 2018), have been
employed to establish relationships between the stand age
and optical and/or microwave-based parameters (spectral
reflectance and/or vegetation indices and backscatter coef-
ficients) derived from remotely sensed images, including
MODIS (Hovi et al. 2019; Kuusinen et al. 2014; Li and
Fox 2012), Quick Bird (Dye et al. 2012), Landsat (Nelson
et al. 2000), SPOT HRV (Wunderle et al. 2007), SAR
(Cutler et al. 2012), LiDAR (Hovi et al. 2019; Wiggins
et al. 2019), Radar (Imhoff 1995), etc. Although the
methods listed above may be used to map the ages of plan-
tation stands, there are several issues that should be
reconsidered. Firstly, the spectral saturation of mature for-
ests (Donaldson Hanna et al. 2019) and higher reflection of
young forests, particularly in those locations that have un-
dergone frequent land use changes (Chen et al. 2012a;
Dong et al. 2013), might reduce the accuracy of models
that estimate the ages of plantation stands. Secondly, forest
reflections primarily emanate from particular tree species,
canopy structures and background structures. Differences
in the reflectance properties between tree species are attrib-
utable to the variable optical properties of foliage elements
and canopy structures (Croft et al. 2013; Donaldson Hanna
et al. 2019). Specific features should be selected, and ded-
icated models should be developed for different forest spe-
cies. Thirdly, algorithms related to forest age invariably
integrate an extensive feature set, which slows down the
algorithms via the inclusion of excessive resources/data
points. Many machine learning algorithms exhibit a
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decrease in accuracy when the number of variables is signif-
icantly higher than optimal (Nilsson et al. 2007). The selection
of small (potentially minimal) feature sets that generate the
best possible results is desirable for practical reasons. Lastly,
existing forest age estimation products are mostly coarse, with
a resolution of 250 m or 500 m (Hovi et al. 2019; Kuusinen
et al. 2014; Li and Fox 2012), and they are created at limited
time points, or even only one time point, which are unable to
capture forest disturbances and recovery histories over ade-
quate spatial or temporal domains.

A highly automated algorithm, referred to as vegetation
change tracker (VCT), has been developed to reconstruct of
recent disturbance histories using Landsat time series stacks
(LTSS) (Huang et al. 2010). VCT is based on spectral-
temporal characteristics of land cover and forest change pro-
cesses and requiresminimal, or no, fine tuning for most forests
with closed, or nearly closed, canopy covers. In the VCT
process, the forest is one of the darkest vegetated surfaces in
the satellite images acquired during the leaf-on growing sea-
son via both visible and several shortwave infrared bands.
During the growing season, forests have similar integrated
forest z-score values, which are substantially more stable over
time, and are mostly lower than those of non-forest land cover
types (Huang et al. 2010). Previous studies have shown that
VCT is effective for the mapping of forest disturbances and
recovery histories, with overall accuracies ranging from 70%
to 86%, which was achieved for disturbances that were
mapped at the individual year level in the USA (Huang et al.
2010; Li et al. 2016; Shen et al. 2017) and Canada (Pickell
et al. 2014; Stueve et al. 2011). Furthermore, the disturbance
detection accuracy increases to over 92% when the distur-
bance data was aggregated into three classes: persisting non-
forest, persistent forest and disturbed forest (Thomas et al.
2011).

By combining available historical inventory data with
historical Landsat images, this study aimed to develop a
reliable framework to track the trajectories of plantation
stand age transitions in three types of plantation stands:
p i n e (P inu s mas son i ana Lamb . ) , Ch i n e s e f i r
(Cunninghamia lanceolata (Lamb.) Hook.), and oak
(Cyclobalanopsis glauca (Thunb.) Oerst.) from 1987 to
2017 in the Lishui City, Zhejiang Province, China. To ob-
tain a robust framework, two methods are proposed to re-
construct the plantation stand age trajectories in Lishui
City. The first is an integrated VCT and spatial analysis
(VCT-SA) for the mapping of recovery forest ages, where
pixels are disturbed at least once during the study period.
The other was an integrated VCT and random forest (VCT-
RF) model to calculate plantation stand ages for persisting
forests in 1997 and then transfer to the remaining years.
Specifically, this study addressed a critical question: can
we demonstrate a robust approach for mapping age pat-
terns and their changes for plantation forests in China?

2 Material and methods

2.1 Research site and sample data collection

Lishui is a mountainous city, situated in the Southwest of
Zhejiang Province, with an administrative region that spans
in latitude, from 27°25′ to 28°57′N, and longitude, from
118°41′ to 120°26′E. Lishui City encompasses 17,300 km2,
of which 80.79% is covered with forest (Fig. 1). The dominant
tree species in this region are pine, Chinese fir, and oak, which
constitutes 33.83%, 26.02%, and 16.99%, respectively, of its
forested land, derived from the Forest Management Inventory
(FMI) of Lishui City, conducted in summer 2013. Lishui City
has undergone considerable land use changes in recent de-
cades, which were largely due to deforestation and reforesta-
tion (Liu et al. 2017).Most deforestation events occurred prior
to the 1970s, since at that time wood production was the sole
aim of forest management.

For this study, the Forest Resources Sampling Survey
(FRSS) of Zhejiang Province was implemented during the
summers of 1994, 2004, and 2014, and the survey data were
used to construct and validate age estimation models. The
FRSS is based on a systematic sampling design (the sample
spacing is a 4 km × 6 km grid) and at each intersection of the
grid a permanent field plot is established to perform a repeti-
tive full calliper investigation to estimate the age of individual
trees (Shen et al. 2018). The permanent sample plots were
used to estimate and validate the forest age model in our study
area (Table 1). Each plot covers 800 m2 (28.28 m × 28.28 m),
and it is permanently marked and periodically revisited. In the
current work, forest tree species and their corresponding lon-
gevity data were compiled from the FMI.

2.2 Datasets and preprocessing

We employed Landsat Surface Reflectance (SR) time series
products due to their free accessibility, 30-m spatial resolution,
and long consistent acquisition record (https://landsat.usgs.
gov/landsat-surface-reflectance-data-products). In this study,
we focused on the forested lands of Lishui, Zhejiang
Province, which is jointly covered by the Landsat scene with
World Reference System II (WRS2) path/rows (WPR) tiles
119/040 (hereafter P119R040) and 119/041 (hereafter
P119R040). Those time series Landsat SR images (Band
Blue, Green, Red, NIR, SWIR1, SWIR2, and Thermal) span-
ning from 1987 to 2017 (Fig. 2) were selected by two criteria
image date and cloud cover percent. Images were selected to
be in the growing season (from May to September for midlat-
itude regions) and with low cloud cover (defined as having <
10% cloud cover throughout this study). The first criterion
was necessary to avoid the confusion of off-leaf deciduous
trees with disturbance events outside this time window
(Huang et al. 2010; Li et al. 2016). Also, images acquired in
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April or October served as substitutions of images acquired
from May to September when they were heavily cloud con-
taminated. Due to heavy cloud contamination, the Landsat
images for 1998 and 2012 were unavailable. The thermal
band was resampled to 30-m resolution and used to detect
the cloud and shadows due to their distinctive temperature
difference compared to other land cover types (Huang et al.

2010). Then those pixels were replaced by clear pixels at
the same location in other images of the same year. By
carefully examining these two criteria but not very strictly
following them due to the above-mentioned constraints, all
of the selected surface reflectance images were combined to
form an annual LTSS, defined as a temporal sequence of
Landsat images, consisting of one image in each year.
Basically, the stack consists of annual Landsat images or
composites falling into the growing season during the entire
research period. However, if these images of the growing
season of a year are heavily contaminated by clouds, we
will use a clear image acquired in May or October to replace
these contaminated images to crea te th is s tack.
Additionally, if these images of the growing season of a
year are not heavily contaminated by clouds, and the clouds
in these images are not spatially coincided, we will combine
these images together to filter out all the clouds to form a
clear composite image, feeding into the stack.

Fig. 1 Maps showing location of
study site and forest type
distributions at Lishui City,
Zhejiang Province, China.
P119R040 indicates the path/row
119/040 of Landsat in WRS-2,
and P119R041 indicates path/row
119/041 of Landsat in WRS-2

Table 1 Number of training and validation plots

Plantations VCT-SA VCT-RF

Number of
validation plots

Number of
training plots

Number of
validation plots

Pine 75 454 234

Chinese fir 92 428 212

Oak 68 341 147
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2.3 VCT algorithm to detect disturbances

Based on the spectral-temporal characteristics of land cover
and forest change, the VCT algorithm consists of two major
steps: individual image analysis and time series analysis of the
LTSS (Huang et al. 2010). Conceptually, VCT firstly performs
cloud and shadow masking on the imagery and then detects
changes in a synthesized forest index as a possible disturbance
signal. For a given LTSS, this algorithm initially identifies
forest samples in each image based on an integrated forest z-
score (IFZ) that is calculated for each pixel. Pixels are
persisting forest when their IFZ values are less than 3
(Huang et al. 2010). The algorithm then tracks the IFZ chang-
es over time to detect where and when a forest disturbance(s)
occurs and produces scene-level annual forest disturbance
maps featuring a disturbance class (disturbed in this year)
and five other classes (persisting forest, probable forest with
recent disturbance, persisting non-forest, persisting water, and
post-disturbance non-forest) (Huang et al. 2010). Forest dis-
turbance is referred to as an event resulting in the sudden
reduction or removal of forest canopy cover and woody bio-
mass and is often manifested by abrupt spectral changes
(Huang et al. 2010). The majority of forest disturbance is
caused by frequent forest harvests in our study area, which
could be captured by the VCT algorithm. After disturbance,
the disturbed patch starts to recover naturally or artificially. A
couple of years later, once this patch looks spectrally like a
forest, the VCTalgorithmwill regard this patch as a successful
forest regeneration event. At this point, the VCT declares that
this patch spectrally resembles a forest. VCT comprises an
automated algorithm that is designed for the evaluation of
forest disturbances and post-disturbance recovery processes
using spectral-temporal signals recorded during Landsat time
series observations (Huang et al. 2010). We produced scene-
level annual forest disturbance maps separately for the two
Landsat scenes (P119R040 and P119R041) for our study for-
estlands. Next, the annual disturbance images of the two
scenes were merged and then extracted by the administrative

vector boundary of Lishui city to produce the annual forest
disturbance map. Then we aggregated the “persisting forest”,
“probable forest with recent disturbance”, as well as “distur-
bance in this year” into the “forest” class to derive estimates
for the total annual forest cover. Subsequently, we extracted
the disturbed pixels of each year from the disturbance map and
calculated the forest disturbance rate by dividing the number
of disturbed pixels by forest pixels.

2.4 Mapping plantation stand age

In accordance with the terminology of the VCT algorithm,
forested pixels that were previously disturbed by forest man-
agement (primarily harvesting activities) represent the “VCT
post-disturbance regrowing forest”. Forest pixels that did not
experience recent disturbances during the time window of the
Landsat LTSS are called “VCT undisturbed forest”. As shown
in Fig. 3, we employed the VCT algorithm to initially detect
these disturbances and then allocated the corresponding pixels
into two classes to determine their ages separately: (1) inte-
grating vegetation change tracker (VCT) algorithm and spatial
analysis (VCT-SA) for the pixels that were disturbed at least
once from 1987 to 2017 and (2) integrating VCT and random
forest (VCT-RF) for the pixels were not disturbed during the
study period. Lastly, the annual forest age of the two kinds of
forest were merged as the annual forest age of Lishui city.

In the VCT-SA model, forest age was calculated by
subtracting the disturbance year from its corresponding recov-
ered year (when the disturbed pixels look spectrally like a
forest on the image), which both could be identified from
the LTSS. Estimated age is then modified by the addition of
another 2 years (since reforestation generally occurs in the
next year following disturbance by using 1-year-old nursery
seedlings in Southern China). For example, when we map the
age of post-disturbance regrowing forest for 2017 (Fig. 3), all
the disturbed pixels from 1987 to 2016 were overlaid with the
probable forest pixels in 2017. If a pixel was a disturbed pixel
in 1987 and evolved to a probable forest pixel in 2017, then

Fig. 2 Statistics of the number of Landsat images used by a P119R040 and b P119R041. Triangle dots represent images of Landsat TM. Square dots
represent images of Landsat ETM+. Round dots represent images of Landsat OLI
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this pixel age should be 32 years (2017 minus 1987 and then
plus 2). Subsequently, the forest pixels along with the estimat-
ed forest age were separately extracted from the pine, Chinese
fir, and oak plantation samples and then validated for each
type of plantation by forest age of FRSS sample plot.

The spectral characteristics such as canopy reflectance and
texture change gradually with stand age at the early age (<
40 years) and become stable at a later ages (> 40 years) (Croft
et al. 2014). Hence, the sample data with the forest age less
than 40 years and the highest quality Landsat images prefera-
bly during the growing season that covered the study area
were considered to build the VCT-RF model. Thus, we chose
to map forest stand age of 1997 by the sample data and the
Landsat images with the highest quality in the time series.
Subsequently, corresponding indices of the Landsat image in
1997 (including vegetation index, textures, and tasselled cap
transformations)were extracted to relate to the selected forest
ages. These vegetation indices have been proven to be effec-
tive for mapping forest development stages and forest stand
ages (Dye et al. 2012; Jensen et al. 1999; Johansen et al.
2007). Details of the spectral and textural measures used in
the age model are summarized in Table 2. Based on these
features, random forest-recursive feature elimination (RF-
RFE) with tenfold cross-validation was applied for feature
selection using training samples (Almeida et al. 2019).
Following this, the best model was identified and applied to
calculate the forest age for 1997 from which the remaining

years in the LTSS were derived, by subtracting/adding the
year(s) from/to this year.

2.5 Uncertainty of model

The Pearson correlation coefficient (COR) measures the
strength of linear association between the predictions and ob-
servations (Sedgwick 2012). Thus, the COR was used to sepa-
rately test the degree of uncertainty of VCT-SA and VCT-RF
for the three plantations. Root mean square error (RMSE) was
used to measure the differences between the predicted values of
model and those observed.Modelling efficiency (MEF) reflects
the ability of the model to project the data by measuring corre-
lations between the predictions and observations, as well as
their coincidence, such as the deviation from the 1:1 line
(Bowman and Azzalini 1997). The bias (BIAS) of the model
reveals whether the model has a systematic bias (Janssen and
Heuberger 1995). It was applied to estimate the mean relative
differences between the predictions and observations.

COR ¼
∑N

i¼1 Pi−P
� �

Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Pi−P
� �2

∑N
i¼1 Oi−O

� �2
r ð1Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1

Pi−O
� �2,

N

vuut ð2Þ

Fig. 3 Flow chart for the combined models
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MEF ¼ 1−
∑N

i¼1 Pi−Oið Þ2

∑N
i¼1 Oi−O

� �2 ð3Þ

BIAS ¼ 1

N
∑N

i¼1
Pi−Oið Þ

.
Oi

ð4Þ

where N is the number of paired values, PI and Oi are the
individual predictions and observations, whereas P and O rep-
resent the means of the predictions and observations,
respectively.

3 Results

3.1 Annual VCT disturbance results

Figure 4 a illustrates an example of forest disturbance detected
by the VCT algorithm. When calculating the percentage of
two types of forest pixels, about 67.65% of the total forested
area that was designated as VCTundisturbed forests, while the
remaining 32.35% of the forested area was defined as VCT

post-disturbance regrowing forests. Spatiotemporal patterns
of forest disturbances detected by the VCTalgorithm revealed
where and how many forest areas were disturbed in earlier
years in Lishui City (Fig. 4b). The annual forest disturbance
rates were produced based on the annual forest disturbance
map from 1987 to 2017. As shown in Fig. 5, the disturbance
rate ranged from a low rate of 0.1% in 2002, to a high of rate
4.6% in 2008, except for the years 1998 and 2012. Most rates
were ranging from 0.5% to 2.0%, which represented the nor-
mal forest disturbance levels for the study area.

3.2 Results and accuracies of VCT-SA and VCT-RF

To examine the performance of these methods, we compared
the VCT-SA predicted ages of the three plantations stand
types against the actual ages derived from forest inventories,
which were separately implemented in the summers of 1994,
2004, and 2014. For each forest type (Fig. 6), the top 21, 12,
and 24 candidate variables were selected for pine, Chinese fir,
and oak plantation, respectively (Table 3). The use of these
variables produced the lowest RMSE compared to the use of

Table 2 Spectral and textural features and their corresponding equations used in this study

Group Features Description

Tasselled cap
transformation
(Crist 1985)

Brightness (TCT_B) (B × 0.3561) + (G × 0.3972) + (R × 0.3904) + (NIR × 0.6966)
+ (SWIR1 × 0.2286) + (SWIR2 × 0.1596)

Greenness
(TCT_G)

[B × (−0.3344)] + [G × (−0.3544)] + [R × (−0.4556)] + (NIR × 0.6966)
+ [SWIR1 × (−0.0242)] + [SWIR2 × (−0.2630)]

Wetness (TCT_W) (B × 0.2626) + (G × 0.2141) + (R × 0.0926) + (NIR × 0.0656) + [SWIR1
× (−0.7629)] + [SWIR2 × (−0.5388)]

Spectral vegetation
indices

Enhanced vegetation index
(EVI) (Huete et al. 2002)

2:5� NIR−Rð Þ
NIRþ6�R−7:5�Bþ1ð Þ

Green normalized difference vegetation index
(GNDVI) (Gitelson and Merzlyak 1998)

NIR−Gð Þ
NIRþGð Þ

Green ration vegetation index (GRVI) (Fiorella and
Ripple 1993)

NIR
G

Modified Simple Ratio
(MSR) (Chen 1996)

NIR
Rð Þ−1ffiffiffiffi
NIR
R

p� �
þ1

Normalized difference vegetation index (NDVI)
(Rouse Jr et al. 1974)

NIR−Rð Þ
NIRþRð Þ

Simple ratio (SR) (Birth and McVey 1968) NIR
R

Transformed difference vegetation index (TDVI)
(Bannari et al. 2002)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5þ NIR−Rð Þ

NIRþRð Þ
q

Textural
features(Anys et al.
1994)

Data Range (DR) for Red (DR_Red),NIR(DR_NIR),
SWIR1(DR_SWIR1),SWIR2(DR_SWIR2)

Vmax − Vmin

Mean(ME) for Red (ME_Red),NIR(ME_NIR),
SWIR1(ME_SWIR1),SWIR2(ME_SWIR2)

∑
i¼0

Ng−1

iP ið Þ

Variance(VA) for Red (VA_Red),NIR(VA_NIR),
SWIR1(VA_SWIR1),SWIR2(VA_SWIR2)

∑
i¼0

Ng−1

i−Mð Þ2 P ið Þ

Entropy(EN) for Red (EN_Red),NIR(EN_NIR),
SWIR1(EN_SWIR1),SWIR2(EN_SWIR2)

− ∑
i¼0

Ng−1

P ið Þ*lnP ið Þ

Skewness(SK) for Red (SK_Red),NIR(SK_NIR),
SWIR1(SK_SWIR1),SWIR2(SK_SWIR2)

∑
i¼0

Ng−1

i−Mð Þ3P ið Þ

Note: B is blue band, G is green band, R is red band, NIR is near infrared band, SWIR 1 is short-wave infrared band 1, and SWIR2 is short-wave infrared
band 2. P(i) is the probability of each pixel value in the window, and Ngis the number of distinct grey levels in the window of the quantized image
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all variables (n = 30) in the three type forests. Specifically, the
decrease of RMSEwasmuch higher in Chinese fir (0.33 years)
than in the oak (0.05 years) and pine (0.07 years) when RF-
RFE was applied in model building. Examining the variables
selected for building the optimal model, we found that only
image textures were selected for Chinese fir plantation model-
ling but spectral and textural variables were identified for pine
and oak plantations.

The plots (Fig. 7) are linear regressions of predicted forest
age values from VCT-SA and VCT-RF in three plantations.

The observed plantation stand age revealed strong positive
correlations with its predicted values. The correlation between
predictions and observations of VCT-SAwas higher than 0.80
(p < 0.001), while the correlation of VCT-RF (0.69~0.74) was
lower. The RMSE of VCT-SA (5.95~6.84 years) was higher
than that of VCT-RF (4.84~5.55 years). The MEF of VCT-SA
was highest in Chinese fir plantation but lowest in pine plan-
tation. The BIAS of all models was lower than 0.16 years, and
the modelling efficiency (MEF) was higher than 0.4, except in
the VCT-SA of pine plantation forest (Table 4).

Fig. 4 a Forest disturbance and
restoration product developed by
VCT algorithm in 2017. b Forest
disturbance patterns mapped by
the VCT algorithm during the
1987–2017 time period. For each
year, the VCTalgorithm was used
to produce maps of disturbance.
Dark green pixels representing
“persisting forest” in the VCT al-
gorithm were defined as “VCT
undisturbed forest”; light green
pixels representing “probable for-
est with recent disturbance” were
defined as “VCT post-disturbance
regrowing forest”
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3.3 Results of forest age mapping for Lishui City

Over the last 31 years, changes in the age structures of forests
have revealed an increasing age structure (Fig. 8). During the
period from 1987 to 2017, the dominant age class initially was
11~20, then 21~30, followed by 31~40 and most recently by
41~50 years in age. These four age classes accounted for
about 85% of the trees in our study area in the year 2017.
The oldest trees in age clasess 51~60 and 61~70 accounted
for less than 15% of the trees in our study area in the year
2017. The spatial and temporal plantation stand ages from
1987 to 2017 are depicted in Fig. 9, where early in the 30-
year window, the plantation stand age was dominated by trees
under 20 years old. However, over time, the trees gradually
grew, and the forest became dominated by an age bracket of
40~50 years. By analysing the age structure, we found that the
plantation stands in our study area in 2017 were 26.55 years
older than those in 1987 (the average ages of pine, Chinese fir,
and oak were 15.65 years, 15.19 years, and 17.26 years in

1987 and then 42.78 years, 40.86 years, and 44.42 years in
2017, respectively), which might be attributed to the effects of
forest protection policies.

4 Discussion

With abundant rain and relatively fertile soils, the productivity
of plantation stands in the Lishui City is among the highest in
China. These plantation stands are expected to increasingly
contribute to the supply of wood, fibre, fuel, and non-timber
forest products, as well as the provision of environmental and
social services (Liu et al. 2014). As environmental policies in
China are increasingly focused on ecosystem-oriented man-
agement and protection (Zhou 2003), forest management in
this area has significantly shifted from wood production only,
to ecological protection. A snowstorm and freezing rain disas-
ter struck the most populated and economically developed
South Central region of China, from January 10 through
February 8, 2008. Approximately 20 million ha of forest were
damaged during this event through widespread crown and
stem breakage, branch snapping and bending, and uprooting
(Zhou et al. 2011). This can explain why there was a big jump
of disturbance rate in 2008 of the LTSS (Fig. 5).

Based on the history of forest management and artificial
and natural disturbances, we integrated remote sensing-based
models (VCT, a spatial analysis model, random forest algo-
rithm, as well as sample data) to map the resetting patterns of
plantation stand ages resulting from forest disturbance and
restoration events. In contrast to previous studies (Chen
et al. 2012b; Nelson et al. 2000; Zhang et al. 2014; Zhang
et al. 2017), the innovation of this study resided in the utiliza-
tion of forest age products derived from the VCT algorithm.
This study showed the spatial distribution of persisting forests
and newly re-established forest stands (Fig. 4a). In this study,
we applied VCT-SA in the post-disturbance regrowing plan-
tation area to estimate forest ages, with the prerequisite of

Fig. 5 Percentage of disturbance over time from the VCT algorithm

Fig. 6 The RMSE obtained from the recursive variable selection (REF) method (X-axis represents number of candidates ranking by importance). The
lowest RMSE (year) obtained from the lowest number of variables were 21, 12, and 24 for pine, Chinese fir, and oak forests, respectively
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VCT-SA being that certain initial information on forest man-
agement should be available (Li et al. 2016). Thus, the age of
seedlings transferred from nurseries and reforestation events
that proceeded during the year following the disturbances
should be known or reasonably presumed. Additionally, the
number of observations could also affect the precision of the
model. If we have observation with forest age less than
10 years in the model of VCT-SA for pine plantation, the
model should perform consistent with the Oak and Chinese
fir plantation types. Further, it should be noted that the initial

information required may be site specific or latitude-
dependent; thus, prior to transferring our VCT-SA to other
regions, we needed to confirm this initial information with
local authorities to ensure the accuracy of the age mapping.

Leaf chlorophyll values increase gradually with stand age
and begin to plateau at a later age (40~50 years) which results
in a change of canopy reflectance (Croft et al. 2014; Kokaly
et al. 2003; Oester 1981). The optical properties of a tree not
only depend on leaf optical properties but also on those of
bark and cones especially for conifers (Guyot et al. 1989).

Table 3 Variables selected by random forest-recursive feature elimination (RFE) with tenfold cross-validation

Species Indexes selected for RF

Pine “ME_NIR”, “EN_Red”, “ME_SWIR2”, “TCT_B”, “ME_SWIR1”, “SK_Red”, “TCT_W”, “EVI”, “SK_SWIR1”,
“SK_SWIR2”, “ME_Red”, “VA_Red”, “SK_NIR”, “VA_SWIR1”, “EN_NIR”, “DR_SWIR2” “VA_NIR”,
“EN_SWIR1”, “GRVI”, “GNDVI”, “TCT_G”

Chinese fir “ME_SWIR1”, “ME_NIR”, “ME_SWIR2”, “SK_SWIR2”, “TCT_B”, “SK_SWIR1”, “SK_NIR”, “ME_Red”,
“EN_Red”, “DR_SWIR1” “SK_Red”, “VA_Red”

Oak “ME_NIR”, “ME_SWIR2”, “SK_SWIR2”, “ME_SWIR1”, “VA_SWIR1”, “TCT_B”, “ME_Red”, “SK_NIR”,
“SK_SWIR1”, “TCT_W”, “EN_Red” “TCT_G”, “VA_Red”, “SK_Red”, “DR_SWIR1”, “EN_SWIR1”
“EN_NIR”, “EN_SWIR2”, “VA_SWIR2”, “VA_NIR”, “DR_SWIR2”, “DR_NIR”, “EVI”, “DR_Red”

Fig. 7 Relationships of observed versus predicted in VCT post-
disturbance regrowing forest of pine plantation (a); VCT post-
disturbance regrowing forest of Chinese fir plantation (b); VCT post-
disturbance regrowing forest of oak plantation (c); VCT undisturbed for-
est of pine plantation (d); VCT undisturbed forest of Chinese fir (e); VCT

undisturbed forest of oak (f). COR is Pearson’s correlation coefficient;
RMSE is the root mean square error; MEF is modelling efficiency; BIAS
is mean relative difference. Comparison of observed and predicted forest
age. The diagonal line indicates the domain where predicted values equal
field-measured values
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The above studies provide the foundation for using three dif-
ferent VCT-RF models for specific forest stands by spectral
characters for the earlier year (1997) when the majority of
forest age was under 40 years in Lishui City. Multiple spectral
data carries redundant information which might result in low
accuracy and a high model calculation load if all relevant
spectral variables were used in the modelling process. The
RF-RFE is capable of selecting important spectral and
texture features that are sensitive to forest age of specific
forest species and improves the accuracy levels. Similarly,
Pullanagari et al. (2018) and Granitto et al. (2006) used RF-
RFE for analysing high-dimensional data and found it to be an
efficient feature selection method, far better than traditional
methods.

Li and Fox (2012) applied MODIS time series to extract
young (< 4 years) and mature rubber trees (≥ 4 years) and
gained an accuracy of over 97%. By integrating both
Landsat time series and L-band PALSAR images, Kou et al.
(2015) achieved accuracies between 80% and 90% for the
three forest age groups mapping. The validation accuracies
of our forest age were inferior to those results with the poten-
tial reasons as follows. Firstly, these studies only mapped age
groups rather than quantitative annual ages. Conceptually,
technical challenges of previous studies are not as high as
our current work, i.e. mapping ages. Secondly, there was no
L-band PALSAR information used in our current work,

leading to the inadequate acquisition of forest structural infor-
mation, although there is a strong connection between forest
age and forest structure (Kou et al. 2015). Our subsequent
research work may consider integrating available L-band
PALSAR into plantation age modelling to improve the accu-
racy of mapping ages. Thirdly, there were not always suffi-
cient available high-quality annual Landsat images acquired
for Lishui City during the leaf-on season for this long time
period (1987–2017). The biggest issue was the coexistence of
abundant summer precipitation and cloud contamination in
our study area. To include one imagery for each year, for
second best, we had to use clear images acquired on April or
October (Fig. 2), which is the leaf-off season heavily
impacting the identification of deciduous trees (e.g. oak plan-
tation in the current work), to replace the growing season
images that had relatively high cloud contamination. Thus,
the replacement may undermine the accuracy of mapping for-
est ages by using spectral and textural inputs from a different
season (Fig. 7c and f, Table 4). Kuusinen et al. (2014) studied
the relationships between forest age and albedo in the visible,
near-infrared, and short-wave broadband based on MODIS
and Landsat albedo retrievals for pine, spruce, and
broadleaved forest and found that the stand level’s errors of
the models applied to broadleaved forests were higher than
those in coniferous forests. However, in our study, the
RMSE of VCT-RF for oak plantation was lower than that of

Table 4 The performance validation of VCT-SA and VCT-RF in three plantations

Models Plantations COR RMSE (year) MEF BIAS (year) Equation

VCT-SA Pine 0.84 6.84 0.15 − 0.20 y = 0.57x + 4.69

Chinese fir 0.86 6.40 0.56 − 0.09 y = 0.60x + 5.01

Oak 0.80 5.95 0.54 − 0.04 y = 0.54x + 5.72

VCT-RF Pine 0.74 5.55 0.53 0.08 y = 0.47x + 13.28

Chinese fir 0.69 4.84 0.45 0.02 y = 0.35x + 16.97

Oak 0.66 4.95 0.42 0.16 y = 0.38x + 15.35

Fig. 8 Annual distribution of
plantation stand ages from 1987
to 2017 at Lishui City, Zhejiang
Province, China. Different
coloured bars represent different
stand age classes (Y-axis) (refer to
the legend across the top)
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pine plantation. The major reason responsible for this differ-
ence may be the different instruments with different radiomet-
ric characteristics and different physical variables (Kuusinen
used albedo considering semi-spherical reflections, whereas
we used reflectance considering directional reflections). In
Chinese fir plantation only texture variables were selected,
which was different from the variables selected for the other
two plantations types. The difference might be attributed to
characteristics of Chinese fir trees. The first is that the forest
canopy of the Chinese fir has a conical shape and often the
crowns are not adjacent or overlapping (Guyot et al. 1989).
Secondly, because Chinese fir is a fast-growing tree, the

growth rate is higher than that of the other two tree species
before 40 years of age, which results in rapid growth of DBH
and tree height (Chen et al. 2015; Zhao et al. 2009). Chinese
fir trees whose crowns typically do not overlap other trees and
the different DBH and tree height for this species may result in
the texture indices being more important than spectral and
tasseled cap (TCT) indices in classifying plantation ages.

In contrast to our study, the age classes or groupsmapswith
a spatial resolution of 250 m or 500 m derived from MODIS
(Hovi et al. 2019; Kuusinen et al. 2014; Li and Fox 2012)
were coarser in terms of age and spatial discrimination ability,
which are less informative and undermine the practical usage

Fig. 9 Mapping of plantation stand age at Lishui City, Zhejiang Province, from 1987 to 2017. Seven classes of forest stand age (year) are shown in
different colours (refer to the legend inset). From these smaller images, it was evident that, over time, the area covered by older forest stands increased
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of these maps in forest management practices. Besides, these
studies focused on the mapping of forest ages for a specific
year only, whereas our work mapped the ages of plantations
and inferred the temporal transitions of ages in a time series
manner. Thus, our mapping results showed good utility to-
ward the development of reasonable forest management strat-
egies. In addition, the premature tree growth stage (e.g. <
25 years) is typically challenging to estimate (Chen et al.
2012a; Dong et al. 2013); thus, a dedicated method should
be applied for premature trees, which is distinct from mature
trees. For the current work, we applied two different models to
map the ages of VCT post-disturbance regrowing and VCT
undisturbed forests, wherein this strategy fully considered var-
ious challenging issues when mapping the forest ages of pre-
mature forests (similar to post-disturbance regrowing forests
here) and mature forests (similar to undisturbed forests).

Additionally, although Landsat data offers extensive spatial
coverage, its average spatial resolution may result in errors
related to the recognition of forest disturbances by VCT, in
contrast to the SPOT HRV (high resolution visible)
(Wunderle et al. 2007). Indeed, multiple mixed pixels in each
scenemay greatly complicate the identification of land features,
while hindering the measurement of spectral indices.
Atmospheric conditions were also of great concern as relates
to object interpretation. Hence, some forests that were disturbed
in the past years had incompletely recovered and do not readily
present spectrally like a forest. In this case, the forest plantation
age is underestimated by our model (Fig. 7). High-resolution
remote sensing data with low cloud coverage is eagerly antici-
pated for applications in further research, such as mapping for-
est stand ages. Further, supplementary LiDAR derived data
might be used in conjunction with Landsat data to gain further
insights into forest stand age dynamics (Wiggins et al. 2019).
Periodically updated information via satellite remote sensing
technology could thus provide valuable data regarding changes
in plantation stand age while assisting forest resource managers
with the formulation of enhanced forest management plans.

For our study, we mapped plantation stand ages annually in
the time series from 1987 to 2017 in Lishui City. These time-
consistent forest age products by forest type can be employed
by forest managers to inform forest harvesting quantities and
locations in accordance with various management purposes
for different tree species, as well as to evaluate the status of
the sustainable utilization of forest resources by analysing age
compositions against corresponding areas. Further, the stand
ages of plantations coupled with allometric equations and bio-
mass expansion factors can be utilized to accurately calculate
the carbon sequestration capabilities and greenhouse gas
fluxes of forests (Ball et al. 2010), which are critical for elu-
cidating the carbon balances of forests across regional scales
(Litvak et al. 2003). Additionally, the mosaic of forest stand
ages has implications for the climate, water resources, habitat
distributions, and ecosystem processes of landscapes (Helmer

et al. 2008). Numerous studies (Fang et al. 2001; Pan et al.
2011b; Wang et al. 2007) have indicated that China’s forests
have served as carbon sinks in recent decades. In this regard as
well, it is clear that our developed high-quality forest stand age
maps will be beneficial for improving carbon budget estima-
tions and accurately projecting future trends for China’s forest
plantation stands.

5 Conclusion

Based on an assembled LTSS consisting of annual Landsat
time series observations and through the use of the VCT algo-
rithm, spatial analysis model, and random forest regression
algorithm, we mapped plantation stand ages for a VCT post-
disturbance regrowing forest and VCT undisturbed forest in
our study area. The results clearly revealed plantation stand
age dynamics, both spatially and temporally, as well as the
effects of forest management policy changes on forest age dy-
namics spanning 1987 to 2017. Since deforestation is contin-
gent on the type, age, and management purposes of forest
stands, our results demonstrated that mapping the distribution
of plantation stand ages, in terms of forest type, can lay the
foundations for improved and prudent forest management for
large forest areas. Moreover, temporally consistent multi-
temporal plantation stand age products may be considered as
valuable data sources for multiple applications, including forest
trajectory prediction and carbon sequestration dynamics. We
believe that the combination of VCT, spatial analysis model,
and random forest regression is robust for synergistically infer-
ring historical plantation stand age distributions. This provides
a critical new tool for assessing plantation stand management
and carbon accounting under various climate change scenarios.
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