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Abstract
• Key message A novel non-destructive method has been developed to predict modulus of elasticity (MOE) of logs 
using measurements taken from cores extracted from discs. The trees were felled and cut into logs to allow valida-
tion of our method; however, similar results would be obtained if the cores were extracted from standing trees. The 
method shows that a single core from breast height is sufficient to predict MOE of logs, allowing early grading and 
sorting of logs for optimal use and processing.
• Context Early estimation of log MOE allows efficient sorting and grading of logs which can improve the financial return 
and reduce wastage of wood.
• Aims This work aims to predict the MOE of logs accurately from measurements taken on cores obtained from trees.
• Methods The MOE of the logs was predicted using ultrasound measurements conducted on small segments obtained from 
cores using two different approaches: segment average and integral average. Sixty-eight trees from locally developed  F1 and 
 F2 hybrid pines (slash pine × Caribbean pine hybrids, Pinus elliottii var. elliottii × P. caribaea var. hondurensis (PEE × PCH 
cross)) were felled and cut into logs to validate the results. The Beam Identification by Non-destructive Grading (BING) 
method was used to measure a reference dynamic MOE (BING-MOE) for each log, and this was compared with the esti-
mated log MOE.
• Results Strong correlations (r = 0.79 to 0.91) between measured log MOE and estimated log MOE were obtained. This 
study revealed that a single core from the breast height (1.3 m) of a tree allows a good prediction of the log MOE. Tree 
height, spacing, and diameter had no significant effect on the log MOE prediction. The segment average MOE under predicts 
the BING-MOE, whereas the integral average method provides very little bias in the prediction. Furthermore, the predic-
tion errors from the regression analysis for all logs were greater in the segment average method compared with the integral 
average method.
• Conclusion This paper presented a novel non-destructive evaluation method capable of predicting the MOE of the whole 
log by combining data available from a single breast-height core extracted from standing trees with our integral average 
MOE approach. The integral average method predicted the BING-MOE more accurately with lower bias compared with 
other existing tools without any complex equipment, analysis, and statistical calibration for segregating out individual trees 
or stands. The method can potentially be used to predict the log MOE of other tree species and extended to predict MOE of 
individual boards that can be sawn from a log.

Keywords Log MOE · Non-destructive · Prediction · Standing tree measurement · Core

1 Introduction

The forest sector’s prosperity is becoming less dependent 
on the traditional volume optimisation and more depend-
ent on value optimisation (Todoroki and Rönnqvist 2002). 
In order to extract the best value from the wood fibre, it 
is essential that the performance of the forest resource be 
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assessed as soon as possible along the wood value chain. 
Assessment of log stiffness properties and efficient sort-
ing of logs can improve the financial return and reduce 
wastage of wood. For some processing sectors, such as 
the sawmilling industry or structural wood manufactur-
ing industry, wood stiffness is the main factor driving 
forest value. The main product manufactured from many 
softwood resources is sawn timber in the form of stand-
ard board sizes. The value of these boards depends on its 
mechanical performances assessed using standard proce-
dures. Non-structural and structural grades are specified 
based on product stiffness quantified by the modulus of 
elasticity (MOE) and its strength quantified by the modu-
lus of rupture (MOR). The standard structural grade rat-
ing is often limited by its stiffness. The MOE dictates the 
mechanical grade of the board. A board’s market value is 
directly linked to its grade based on individual grading 
performance, with structural grade boards worth ≥ $350 
/  m3 and non-structural boards worth approximately $80/
m3 (Baillères et al. 2019). Moreover, stiffness measure-
ments can also be used to improve breeding, planting, and 
silviculture management so that future forests have bet-
ter properties (Legg and Bradley 2016a). This is critical 
for young, fast growing plantations, since the variation of 
the important wood properties is substantial within and 
between trees, even for trees of the same age and from the 
same stand (Huang et al. 2003; Zobel and Buijtenen 1989; 
Zobel and Jett 2012; Zobel and Sprague 2012). There-
fore, accurate and early measurement of stiffness proper-
ties (modulus of elasticity, MOE) is essential to grade and 
sort logs allowing optimal use of wood resources.

During the past few decades, research has developed 
and refined non-destructive evaluation (NDE) approaches 
and tools for measuring the MOE of logs. As described 
by Schimleck et al. (2019), an approach can be defined 
as non-destructive if it is applied to either a standing 
tree or a felled log or if the method is used on a radial 
sample. The radial sample can be obtained from either 
an increment core or disc after felling. These authors dis-
cussed various NDE tools for assessing wood properties 
in both the field and laboratory including acoustics, Pilo-
dyn, Resistograph, Rigidimeter, computed tomography 
(CT) scanning, the Scion’s DiscBot, near-infrared (NIR) 
spectroscopy, radial sample acoustics, and SilviScan. A 
tree bending apparatus (rigidimeter) was developed by 
several researchers to determine MOE of standing trees 
(Koizumi 1987; Koizumi and Ueda 1986; Mamdy et al. 
1999; Prestemon and Buongiorno 2000). This method 
measured the deflection of the trunk at a specific point 
under a bending moment. The authors obtained a coef-
ficient of determination of 0.54 between tree MOE and 
the average MOE of the dried boards cut from the same 
tree; however, this method was fairly time-consuming 

as only 20–50 trees could be measured per day depend-
ing on the apparatus (Launay et al. 2000; Wessels et al. 
2011). Launay et al. (2000) highlighted the possibility of 
measuring more than 50 trees a day with a team of three 
people under good weather conditions.

Acoustic techniques are the most commonly and 
commercially used techniques and are inexpensive, 
fast, robust, and easily used in the field. Acoustic tools 
have been used to assess standing trees before harvest, 
enabling management, planning, harvesting, and wood 
processing to be carried out in a way that maximises 
extracted value from the resource (Schimleck et  al. 
2019). These methods measure stress wave speed through 
the stem, generated by tapping one end with a light ham-
mer. The time of flight (TOF) of the acoustic wave is 
measured between the transmitter probe and receiver 
probe (Wang and Ross 2002; Wessels et al. 2011). The 
wave speed and a dynamic MOE are calculated from 
the TOF and density. Usually, for a given tree type, a 
fixed density is assumed to calculate MOE. For example, 
the green density of radiata pine is often chosen to be 
approximately 1050 kg/m3 (Legg and Bradley 2016a). 
Acoustic measurement techniques based on the above 
density assumptions have been applied to segregate for-
est products by measuring a stiffness on standing trees, 
felled logs, and sawn timber (Legg and Bradley 2016a; 
Wang and Ross 2002). The coefficient of determination 
between standing tree acoustic measures and the static 
modulus of elasticity  (MOEs) of defect-containing timber 
from these trees varied from 0.33 to 0.64 depending on 
the nature of the resources and the variation amplitude 
of the MOE (Ikeda 2002; Ishiguri et al. 2006; Matheson 
et al. 2002). In studies relating dynamic MOE  (MOEd) of 
standing trees with  MOEs and modulus of rupture (MOR) 
of clear pieces of wood from those trees, it was found 
that correlation coefficients of 0.63 to 0.69 for  MOEs and 
0.36 to 0.65 for MOR were obtained (Wang et al. 2000, 
2007b; Wessels et al. 2011). However, the constant den-
sity assumption often leads to large measurement approx-
imation errors since the actual average density of the tree 
stems may vary significantly along the radius of the stem 
due to variations across the growth rings. This velocity 
measurement technique therefore has a potential source 
of error since the MOE is proportional to the square of 
the velocity. Moreover, the simplified equation used to 
calculate MOE using the acoustic method assumes that 
the vibration is in an isotropic, homogeneous and infi-
nite continuous media (Strutt and Rayleigh 1945). The 
TOF acoustic tool can provide biased results in older 
stands as outerwood properties become more consist-
ent in older trees. An alternative acoustic approach, i.e. 
resonance methods, was also used for felled logs, and the 
measurement principles for TOF and resonance applied 
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to standing trees and logs are different (Auty and Achim 
2008; Wang et  al. 2007a). Resonance approaches are 
more representative of a whole log and considered more 
accurate than TOF methods (Simic et al. 2019).

Pilodyn is one of the least invasive tools and involves 
the injection of a sticker pin (spring-loaded) with a known 
force. The penetration depth is negatively correlated with 
wood density. However, the accuracy of Pilodyn is limited 
(Cown 1978) and considered unreliable for tree selection in 
breeding programs (Raymond et al. 1998). Moreover, the 
Pilodyn tools evaluate only the outermost rings of the wood, 
and thus, a stem’s mean density is not representative (Gao 
et al. 2017).

The Resistograph has been used historically to identify 
decay and other defects in trees and poles. It provides a 
rapid and less expensive means of collecting wood density 
data. Research has shown that the IML PD400 (Resi) can 
explain over 80% of the variance in the average density 
data (Downes and Lausberg 2016; Downes et al. 2018). 
However, there are issues regarding drag, wear of the Resi 
needle, the effect of moisture on the resistance values, and 
the tendency of the needle to curve right or left (Schimleck 
et al. 2019).

Internal MOE variation analysis has been measured 
on increment cores (Giroud et  al. 2017; Hong et  al. 
2015; Ivković et al. 2008). The MOE of wood varies 
significantly along the radius within a tree (Baillères 
et al. 2019; Zobel and Buijtenen 1989) compared with 
its tangential or longitudinal variation. Bucur (1983) 
determined stiffness and shear moduli of 5-mm diameter 
increment core using an ultrasonic velocity method and 
found good correlation between the ultrasound method 
and static bedning test. The ultrasonic method is capable 
of rapidly detecting the differences between individual 
characteristics of living trees.

SilviScan™ predicts the MOE by measuring wood 
density and microfibril angle using an X-ray densitom-
eter and X-ray diffractometer respectively, from incre-
ment cores taken from trees (Evans et al. 2000). This 
measurement method is not cost-effective as it requires 
a large investment and has high running costs. Never-
theless, it provides a very localised (less than 0.5 mm) 
measurement of the stiffness along the radius (Knowles 
et al. 2004).

Near-infrared (NIR) spectroscopy can be applied 
to analyse samples obtained from increment cores. 
The analysis involves a calibration process through 
a chemometr ic approach using training samples 
(calibration set) to develop the mathematical relationship 
between the NIR spectra and the property of interest 
(Wessels et al. 2011). Schimleck et al. (2001) obtained 

coefficients of determination of 0.90 and 0.77 for the 
relationship between NIR data and MOE and MOR, 
respectively, for clear Eucalyptis delegatensis samples 
of the calibration set. Thumm and Meder (2001) used 
NIR to predict MOE of clear wood specimens of radiata 
pine (Pinus radiata D. Don). The model was calibrated 
on NIR spectra from 404 samples, and the model was 
then able to predict the stiffness of 80 test samples with 
14% error. Kelley et al. (2004) measured NIR spectra and 
mechanical properties of 1000 small clear wood sample 
of six softwoods. The authors used a partial least squares 
(PLS) approach to predict mechanical properties and 
NIR spectra and obtained R2 values greater than 0.85. 
Further studies have also found higher values of R2 for 
MOE (Gindl et al. 2001; Via et al. 2003). However, Via 
et al. (2003) found that the predictability of the model 
decreased significantly when pith wood was considered. 
Similar decreased predictability was observed for full-
sized defect-containing timber (Hoffmeyer and Pedersen 
1995) and compression wood (Gindl et  al. 2001). In 
summary, NIR spectroscopy is able to predict many 
basic properties; however, this approach requires a robust 
calibration and ongoing recalibration. The relationship 
developed through calibration (training data) is used to 
predict measurement of unknown samples.

The overall MOE of a stem and tree also depends on 
the variation or pattern of internal MOE variation. There-
fore, consideration of internal variation in predicting the 
stem/tree MOE should improve the prediction capability. 
Although increment cores are able to provide detailed 
information on the variation of properties within the tree, 
the results obtained from increment coring have not been 
used to predict the MOE of logs.

In this work, we investigate the use of MOE 
measurements taken on cores from trees to predict 
log MOE of locally developed  F1 and  F2 hybrid pines 
(slash pine × Caribbean pine hybrids, Pinus elliottii 
var. elliottii × P. caribaea var. hondurensis (PEE × PCH 
cross)). These cores were cut into 20  mm segments 
on which measurements were made. This allows us to 
account for the large internal pith-to-bark variation that 
is observed in MOE when formulating these predictions. 
We use an approach based on an asymmetric sigmoid 
function to model the MOE variation with radius. To 
calculate the MOE of a log, we integrate this function 
over the cross-sectional area to account for the varying 
contribution to the average based on the area of timber. 
This is contrasted to taking a simple arithmetic average 
of the core segments, where each segment’s MOE would 
be weighted equally. In the remainder of this article we 
refer to the following types of MOE:
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1. BING-MOE: the reference measurement made on the 
logs using the BING method.

2. US-MOE: the measurement made on core segments 
using the ultrasound technique.

3. US-MOESEG: the estimated log US-MOE obtained 
from the segment average.

4. US-MOE5PL: the estimated log US-MOE obtained 
from the integral average of a 5-parameter logistic 
function.

Each of these will be discussed further below.

2  Material and methods

2.1  Overall approach

Southern pine samples were stratified and collected from 
southeast Queensland (SEQ) plantation forests. A total of 
68 trees of 19, 24 and 28 years of age were harvested from 
plantations in Beerburrum (latitude − 26.98 and longitude 
152.98), Tuan (latitude − 25.79 and longitude 152.91), and 
Toolara (latitude − 25.98 and longitude 152.88) in SEQ.

The trees sampled for this study were a combination 
of locally developed  F1 and  F2 hybrid pines (slash 
pine × Caribbean pine hybrids, Pinus elliottii var. 
elliottii × P. caribaea var. hondurensis PEE × PCH cross): 
30 trees from Tuan of 28 years of age were  F2 hybrid pine 
(a second filial hybrid of PEE × PCH cross), with stocking 
of 388 stems per hectare; 30 trees from Beerburrum of 
19 years of age were  F1 hybrid pine (a first filial hybrid 
of PEE × PCH cross) with stocking between 200 and 1000 
stems per hectare, and 8 trees from Toolara of 24 years 
of age were  F1 hybrid pine with stocking between 1006 
and 2660 stems per hectare (Kumar et al. 2020). Trees at 
each location were collected using a stratified sampling 
system to ensure all harvestable diameter classes were 
sampled. The trees were cut to obtain a whole log which 
was subsequently cut into two small logs (1.2 m) from its 
top and bottom, one sawlog (3.9 m) from the middle, and 
four discs as shown in Fig. 1. The four discs are taken at 
approximately 0.92 m, 2.34 m, 6.46 m, and 7.88 m from 
the ground.

All the logs (whole log, top log, sawlog, bottom log) were 
weighed and measured for BING-MOE using an acoustic 
resonance technique (discussed in Sect. 3.2) which was the 
experimental reference MOE used in this study. Four trans-
verse cores cut out of the disc were segmented into 20-mm 
sections, conditioned at 12% moisture content, and their prop-
erties were measured using an ultrasound system (discussed 
in Sect. 3.4.1). These transverse cores represent the increment 
cores from standing trees. The US-MOE of the segments was 
used to estimate the MOE of the logs using two methods: (a) 
segment average MOE (US-MOESEG) and (b) integral average 
MOE (US-MOE5PL, described in Sect. 3.3.2). The estimated 
(US-MOESEG and US-MOE5PL) and experimental log MOE 
(BING-MOE) were then compared and analysed.

2.2  Experimental reference MOE (BING‑MOE) 
by acoustic resonance technique

The MOE of each log was measured using Beam Identifica-
tion by Non-destructive Grading (BING) (Paradis et al. 2017), 
which is a resonance acoustic method for estimating MOE. It 
consists of a microphone, an acquisition card (Pico Technol-
ogy), two elastic supports, and a hand-held hammer (Baillères 
et al. 2009; Brancheriau 2014; Faydi et al. 2017).

For longitudinal vibrations, the following equation was 
used to determine the axial modulus of elasticity:

Here, L is the length of the beam (m), ρ is the density (kg/
m3), and fn is the vibration frequency of rank n (1/s).

This equation is valid for slender beams (L/h ≥ 10, where 
h is the height of the beam) and only for the fundamental 
frequency (Brancheriau and Baillères 2002).

2.3  Correlation matrices, statistical analysis, 
and regression analysis

The correlation matrices, statistical analysis, and regres-
sion analysis were carried out using the open-source sta-
tistical package, R (RStudio Team 2015). The Spearman’s 

(1)BING −MOE = 4L2�

(

f
n

n

)2

.

Fig. 1  Sacrificial sampling 
template showing the whole log, 
and three smaller logs and four 
discs sampled from the tree
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correlation coefficients between log BING-MOE (whole log, 
bottom log, sawlog, and top log) and other variables, namely, 
stocking, diameters, diameter at breast height (DBH), and 
height of the trees Pearson’s correlation between MOE, were 
presented, and correlation with p > 0.05 are considered sta-
tistically insignificant and are left blank. For the regression 
analysis, the red line and red text in the figures show the 
regression line and coefficient when fitted with a zero inter-
cept (regression through the origin), and blue colour repre-
sents ordinary regression with intercept.

2.4  Estimation of log MOE

The MOE of all three logs were estimated using two meth-
ods: segment average MOE and integral average MOE as 
discussed below.

2.4.1  Segment average MOE (US‑MOESEG)

Four transverse cores were cut out of the four discs, 
i.e., one core per disc. The cores were marked out at 
20-mm intervals starting at the outer end (bark side) and 
a unique number marked on each segment towards the 
pith then from the other bark side towards the pith (see 
Fig. 2a and c). The segment markings and their relative 
position from the piths were marked on tracing paper as 
shown in Fig. 2b. The tracing papers were scanned, and 
the scanned images were cropped, and centroids of the 
rings, segments, and pith markings were identified using 
MATLAB® (MATLAB 2017). Then, the mean distances 
of the segments from the pith and the ring locations were 
calculated.

After mapping, the cores were segmented into 20-mm 
sections using a guillotine for further measurement (Fig. 2c). 
The unique identifier of each segment was used to maintain 

traceability to its original core, tree, plot, and compartment 
and logging area.

The mean wood stiffness value for each segment was 
determined using an ultrasound device (Fig. 3). We refer to 
the stiffness measured using this method as the ultrasound 
MOE (US-MOE). Each segment was placed between two 
transducers, and the segment’s thickness was recorded. 
Measurements were performed in transmission mode at 
1 MHz with a dry coupling (thin elastomer). The device 
ensured a constant, light contact pressure. The output signal 
was digitised to calculate the propagation time. The equip-
ment used for this study shown in Fig. 3 included a Pico-
scope oscilloscope (Pico 3224), Olympus 5077PR square 

Fig. 2  An example of a (a) 
whole core scan, (b) tracings 
of pith, cambial rings and 
segments, and (c) segments for 
Ultrasound MOE (US-MOE) 
measurement

Fig. 3  Ultrasound apparatus for calculation of wood stiffness proper-
ties (US-MOE)
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wave emitter/receiver, two contact transducers (V103 Vid-
eoscan, Olympus), and a computer.

The stiffness of each segment, expressed as US-MOE in 
megapascals (MPa), was determined through a corrective for-
mula of the conventional equation (Rakotovololonalimanana 
et al. 2015):

where ρ = density (kg/m3), V = wave velocity (m/s), 
L = segment thickness (m), and � = propagation time (s).

To calculate the US-MOESEG of a log, the arithmetic 
mean of the US-MOE of the segments from each core was 
computed. We then compared this with the BING-MOE 
measured on the logs. The calculation of the US-MOE5PL 
will be discussed in the next section.

2.4.2  Integral average MOE (US‑MOE5PL)

Five parameter logistic model fitting The variation of 
wood properties (MOE) along the radius (pith to bark) has 
been described by a sigmoidal function (S-shaped curve) 
by several researchers (Bailleres et al. 2005; Zobel and 
Buijtenen 1989). In this study, a five-parameter logistic 
(5PL) function was used to describe the radial variation of 
US-MOE obtained from segment data. The 5PL model is 
widely used in biological literature (Ricketts and Head 1999; 
Wild 2013) and exhibits rapid initial growth (increase) before 
approaching a plateau and can incorporate asymmetry. The 
5PL can dramatically improve the accuracy over the use of 
curves symmetric about their inflection point such as the 
four-parameter logistic (4PL) function (Gottschalk and Dunn 
2005; Wild 2013). For our data, the 5PL function gave a 
root-mean-square error (RMSE) approximately 10% lower 
than the symmetric 4PL function. It is commonly shown 
that wood properties such as density and MOE follow this 
type of pattern, due to normal plant physiology and wood 
formation processes. The 5PL model used in this study for 
MOE is given by

Here, r (m) is the radial position for the segment from 
the pith, A is the asymptotic maximum, B is the asymptotic 
minimum, C is the inflection point midway between A and 
B (when E = 1 ), D is the slope factor which characterises 
the steepness of the curve, and E is the asymmetry factor.

We have utilised an orthogonal distance regression 
(ODR) algorithm (Nocedal and Wright 2006) to obtain the 
best fit of the 5PL function to the measured data. ODR is 

(2)US −MOE = �V2 = �

(

L

�

)2

,

(3)
m(r) = A +

B − A

(

1 +

(

r

C

)

D

)

E
.

preferred over standard regression techniques when there 
may be an error in both the measured property and error in 
the independent variable (radial position in this case) (Boggs 
and Rogers 1990). The radial position corresponding to the 
US-MOE for each core segment was taken at the geometric 
centre of the segment. However, there may be errors associ-
ated with measuring this radial position due to the manual 
measurement, and it may not accurately reflect the true radial 
position for the measured value of US-MOE due to the dif-
ferent proportions of each tree ring in the segment. We have 
utilised MATLAB®’s constrained minimisation functions 
(MATLAB Optimization Toolbox 2016a) to implement 
orthogonal regression. To compare our orthogonal regres-
sion approach, we also performed fitting of the 5PL function 
using classical (ordinary) regression, which minimises the 
vertical distance between the data and the curve.

Calculation of US-MOE5PL This section describes the 
methods applied to extract quantitative characteristic values 
such as the quantity of wood for a given level of performance 
(e.g., above 10,000 MPa) or the average MOE for a given 
age interval. The 5PL functions ( m(r) ) developed in the pre-
vious section were used to calculate the US-MOE5PL of the 
logs. The US-MOE5PL of a log section can be calculated 
using a single core and by applying the mean value theorem, 
where we assume that the log can be considered cylindrical. 
The mean value theorem gives that

where m(r) is the MOE at radial coordinate r given by the 
fitted 5PL curve, � is the standard polar angular coordinate, z 
is the axial coordinate, h is the length of the log, and R is the 
outer log radius. By assuming variation in the angular and 
longitudinal direction is negligible, we can reduce Eq. (4) to

We have used MATLAB® to calculate this integral. 
The value obtained by this method, defined here as the US-
MOE5PL, was directly compared with the BING-MOE.

3  Results

3.1  5PL fitting results

Representative examples of the 5-parameter logistic (5PL) 
function fitted to the US-MOE of the segments against radius 
for four cores along the height of a tree are shown in Fig. 4.

Figure 5 shows a comparison between the root-mean-
squared-error (RMSE) for orthogonal and ordinary 
regression. We see that orthogonal regression has an RMSE 

(4)US −MOE5PL =
1

h�R2∫
h

0
∫

2π

0
∫

R

0

m(r)rdrd�dz

(5)US −MOE5PL =
2

R2∫
R

0

m(r)rdr.
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consistently less than that for ordinary regression, thus 
justifying the use of this approach here.

3.2  Correlations between the variables 
and BING‑MOE of the logs

As expected, a moderate negative cor relation 
( r = −0.76 to − 0.68 ) was found between stocking and diam-
eters for all logs. Height of the trees showed a moderate 
positive correlation with all log BING-MOE as shown in 

Fig. 6. A very strong correlation ( r = 0.89to0.93) between 
BING-MOE of the logs from different heights and the whole 
log BING-MOE was found.

3.3  Correlations between BING‑MOE and US‑MOESEG

The BING-MOE for all logs were correlated with the US-
MOESEG obtained from four cores. Overall, strong corre-
lations ( 0.79 to 0.95 ) between whole log BING-MOE and 
US-MOESEG were found (Fig. 7).

The butt log BING-MOE was well correlated with US-
MOESEG of cores 1, 2, and 3 having an r value of 0.89, 
0.89, and 0.88 respectively, and slightly less correlated with 
the US-MOESEG at core height 4 ( r = 0.82) (as shown in 
Fig. 7). US-MOESEG of cores 2 and 3 showed a better cor-
relation for butt log, sawlog, and top log BING-MOE than 
whole log BING-MOE. The lowest correlation coefficients 
( 0.79 to 0.85) were obtained between US-MOESEG for core 
4 and BING-MOE (Fig. 7).

Figure 8 shows the linear regression between the BING-
MOE of the logs and the US-MOESEG using core 1. The 
red line and red text in the figures show the regression line 
and coefficient when fitted with a zero intercept (regres-
sion through the origin), and blue colour represents ordi-
nary regression with intercept. Overall, the results from 
Fig. 8 indicate that core 1 (i.e., the core was taken from 
the breast height of a tree) is sufficient to provide a reason-
able prediction of log BING-MOE (with R2 = 0.64 to 0.79 ). 
The RMSE values for the regression analysis between US-
MOESEG from core 1 and BING-MOE were 1252, 1119, 

Fig. 4  Example of 5PL fitting 
between US-MOE and radius 
of four cores  taken from the 
bottom to the top of a log

Fig. 5  Comparison between orthogonal and ordinary regression. Orthog-
onal regression consistently shows a lower RMSE when compared with 
ordinary regression
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1273, and 1165 MPa for whole log, butt log, sawlog, and 
top log respectively.

3.4  Correlations between BING‑MOE and US‑MOE5PL

Figure 9 shows the correlation matrix between the BING-
MOE and the predicted US-MOE5PL using four cores. Simi-
lar to the US-MOESEG, the correlation coefficient, r, varies 
from 0.79 to 0.95 . Figure 9 also shows that using the core at 
the top of the log gives lower prediction capabilities of the 
whole log, sawlog, and butt log ( r = 0.80, 0.84, 0.79).

Figure 10 shows the regression analysis between the 
BING-MOE and US-MOE5PL using core 1. In contrast to 
the US-MOESEG correlations shown in Fig. 8, significant 
improvement in prediction capability was obtained as the 
slope of the regression line with an intercept at zero (red 
line) is close to unity (shown in Fig. 10). The RMSEs for 
the linear regression model between the US-MOE5PL of core 

1 and BING-MOE were 1203, 1091, 1225, and 1027 MPa 
for whole log, butt log, sawlog, and top log respectively.

4  Discussion

The 5PL function was able to capture the overall trends 
exhibited in the data and acts to smooth the observed variation 
in US-MOE, particularly near the bark (Fig. 4). Therefore, 
the sigmoidal shape provides an effective US-MOE trajectory 
inside a tree which is supported by Zobel and Buijtenen (1989) 
and Bailleres et al. (2005). The 5PL model showed a large 
radial variation of US-MOE within a tree, which was similarly 
reported by Zobel and Buijtenen (1989).

As expected, a relative strong negative correlation 
( r = −0.76 to − 0.68 ) was found between stocking and diam-
eters for all logs. This is expected because the trees at higher 
stocking (i.e. closer spacing) have more competition thus 

Fig. 6  Correlation matrix of 
BING-MOE with height, diam-
eter, and stockings
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slower growth rates and smaller diameters. The correlation 
coefficient (r) between density and BING-MOE of the cor-
responding log was weak with a value of 0.20, 0.38, 0.33, 
and 0.20 for whole log, butt log, sawlog, and top log respec-
tively. Butler et al. (2017) and Knowles et al. (2004) also 
reported a similar weak correlation between basic density 
and mean lumber MOE. The correlation between MOE and 
density of logs becomes weaker for the relatively upper logs 
of the tree possibly because of less variation in density near 
the top of the tree as the juvenile wood proportion increase 
with height.

Correlations between BING-MOE and US-MOESEG 
(Fig. 7) indicate that the US-MOESEG can explain 62 to 89% 
of the variance in log BING-MOE. Core 4 provided the low-
est correlation coefficients between US-MOESEG and BING-
MOE ( 0.79to0.85) , likely due to core 4 being the topmost 
core with a smaller diameter, thus providing fewer segments 
compared with the bottom core (core 1). Similar results were 
found for the US-MOE5PL using core 4 and BING-MOE of 
the logs (Fig. 9). The segment sampling methodology that 
cuts the segments sequentially from the bark to the pith may 
explain this tendency. Often the segment close to the pith 

could not be measured because of defects, or because they 
were undersize (< 20 mm). Therefore, the segments with 
lower US-MOE measurements were less represented when 
the reconstruction method was applied on small cores from 
the top of the whole log. Consequently, the higher US-MOE 
segments (outer segments) have greater weighting and could 
explain the overestimation on the smaller cores. Moreover, 
the top core (core 4) contains wood formed in the later years 
and does not represent the wood formed during early growth 
of the tree. Thus, core 4 may result in a less accurate repre-
sentation of actual log BING-MOE.

The coefficient of determination ( R2) between the US-
MOESEG using core 1 i.e. the breast height core (Fig. 8) 
and BING-MOE varies between 0.63 and 0.76. On the 
other hand, the correlation between BING-MOE and US-
MOE5PL using core 1 provided coefficient of determina-
tion ( R2) values of between 0.65 and 0.79. Therefore, a 
breast height core can explain 63–76% and 65–79% of 
BING-MOE of the logs obtained from various heights 
of the tree (top log, sawlog, and butt lot) by using seg-
ment average and iintegral average approach respectively. 
However, the most important difference between the two 

Fig. 7  Correlation matrix for 
the BING-MOE and US-MOE-
SEG from four cores
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methods (i.e. segment average and integral average) is 
pointed out by the slopes of the regression line when 
fitted through the origin. The slope of the regression 
line with zero intercept for the segment average method 
is much higher (varies from 1.2 to 1.28 as shown in 
Fig. 8), compared with the same obtained from the inte-
gral average method (varies from 1.01 to 1.08 as shown 
in Fig. 10). This means the US-MOESEG under predicts 
the BING-MOE by 20–28%, whereas the US-MOE5PL 
provides very small bias in the prediction of BING-MOE 
from a breast height core. Some other methods, such as 
acoustic velocity, over predict the MOE, and some cor-
rections using density or moisture content can be applied 
to obtain an adjusted MOE and reduce bias in the pre-
diction (Mora et al. 2009; Paradis et al. 2013). In con-
trast, the integral average method provides very minimal 
bias without any adjustment. This is possibly because 
the integral approach takes into account the amount (or 
area) of wood having a given US-MOE along the radius, 
whereas the segment average only takes the arithmetic 

average US-MOE of the large variation along the radius, 
and hence, each radial position is assumed to contain the 
same amount of wood. This results in less bias between 
the measured and predicted MOE values. The RMSE val-
ues obtained from regression analysis for all logs were 
greater in the segment average method compared with 
the integral average method.

The integral average method provided much better 
prediction compared with existing tools with an R2  up to 
0.79. Knowles et al. (2004) reported R2 = 0.17 and 0.50 
for IML hammer (stress wave technique) and SilviScan-2 
respectively, and R2 = 0.0 for Pilodyn. Paradis et  al. 
(2013) reported R2 = 0.41 between observed MOE and 
MOE estimated as a function of acoustic velocity and tree 
diameter which is slightly lower than the values of 0.65 
and 0.55 reported by Mora et al. (2009) and Liu (2011). 
In an evaluation of three NDE technologies, the ST300, 
IML PD400 Resistograph, and ultrasound MOE measured 
on cores taken at breast height, the 5PL model had the 
highest correlation (R2 = 0.78) and least bias (Baillères 

Fig. 8  Regression of BING-MOE and US-MOESEG from core 1
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et al. 2019). In addition, the ST300 over predicts log 
MOE measured using resonance acoustic systems (Legg 
and Bradley 2016b; Mora et al. 2009; Wang 2013). As 
the US-MOE5PL system accurately measures internal 
variation in wood properties, the 5PL models can be 
extended with further mathematical modelling to predict 
MOE of individual boards can be sawn from a log. The 
major limitation of the US-MOE5PL approach outlined 
here is the longer sample preparation and processing time 
compared with other methods such as Resistograph and 
ST300. Approximately 30–40 breast height cores per 
day can be collected for ultrasound screening and these 
need processing in the laboratory before the screening. In 
contrast, 160–200 ST300 readings can be collected and 
300–400 Resistograph readings can be collected per day 
(Baillères et al. 2019; Schimleck et al. 2019). Another 
real advantage of the method presented in this article is 
that it does not rely on statistical calibration as required 
for the ST300 and Resistograph, so plantation coops that 
have trees with log MOE that are outside the range of 
those previously measured can be accurately predicted. 

Moreover, since no statististical calibration is involved, 
the method and findings can also be applied to other 
tree species. The US-MOE5PL technique also provides 
a relatively cheap way of estimating log MOE without 
any complex tools and analysis such as those needed 
for Silviscan and NIR. The method could be automated/
labour cost could be minimised by developing a method 
for NIR measurement of the core to get the radial MOE 
profile and use the integral average method to predict 
log MOE.

When analysed together, the above results indicate that 
a single core from the bottom of the stem is sufficient to 
predict the log BING-MOE. The integral average method 
offers the advantage of non-destructive evaluation of logs 
by using a breast height core measurement from standing 
trees to evaluate and predict the MOE of the whole log 
with minimal bias. Moreover, mathematical manipulation 
to calculate the US-MOE5PL is fairly simple and is not 
computationally intensive. Therefore we recommend the 
use of integral average method.

Fig. 9  Correlation matrix for 
BING-MOE and US-MOE5PL 
from four cores
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5  Conclusion

The research reported here has demonstrated that increment 
coring can be successfully used to estimate the log MOE 
from a single breast height core. Moreover, the segments’ 
US-MOE obtained from cores enabled the internal variation 
of MOE within a tree to be exhibited. The orthogonal 
regression analysis used to fit the 5PL function to the core 
US-MOE data provided lower RMSE values compared with 
ordinary regression. We found that stocking, diameter, height, 
and density showed a weak correlation with the log BING-
MOE. Both the US-MOESEG and the US-MOE5PL were well 
correlated with BING-MOE, having a correlation coefficient 
r = 0.79to0.95. However, the integral average approach 
significantly improves the prediction capacity when regressed 
with BING-MOE because the slope of the regression line 
with a zero intercept was closer to unity compared with the 
higher values computed for the US-MOESEG. It was revealed 
that a single core at breast height was sufficient to predict the 
BING-MOE with a reasonable R2 value. Therefore, a major 

contribution of our work is that by combining data available 
from a single breast-height core extracted from standing trees 
with our US-MOE5PL approach, we have identified a non-
destructive evaluation method capable of predicting the MOE 
of the logs that can be cut from a tree. This non-destructive 
assessment of log MOE obtained from a breast height core 
can allow industry to sort logs allowing for optimal use 
of wood resources. The method described provided more 
accurate log MOE estimation with lower bias compared with 
other existing tools without any complex tools and analysis 
and statistical calibration. The method can potentially be used 
to predict the log MOE of other tree species and individual 
board MOE that can be sawn from a tree.
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