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Abstract
• Key message Nitrogen (N) addition (10 and 15 g N m−2 year−1 as dissolved ��

4
��

3
) significantly increased the 

CO2 efflux from the forest soil and the fine root biomass in a maple (Acer velutinum Bioss.) plantation. Following a 
seasonal pattern, soil CO2 efflux showed an exponential relationship with the fine root biomass and soil temperature.
• Context The effect of increased atmospheric Nitrogen (N) deposition on forest soil  CO2 efflux is still unclear in the Hyr-
canian forests and has received considerable attention in the context of global climate change.
• Aims Aims of this study were to determine how soil  CO2 efflux and fine root biomass change after N addition in a maple 
(Acer velutinum Bioss.) plantation.
• Methods Since the wet N deposition in these areas is 3–5 g N  m−2  year−1, four treatments including N1 (5 g N  m−2 
 year−1), N2 (10 g N  m−2  year−1), N3 (15 g N  m−2  year−1), and N0 (control) were selected. Twelve plots (10 × 20 m) were 
established, and a NH

4
NO

3
 solution was sprayed monthly below the trees’ canopy for 1 year. Soil temperature, moisture, 

and soil  CO2 efflux were measured monthly with static dark closed chambers. Fine root biomass was seasonally measured 
by soil sampling at the same depth.
• Results Soil temperature, moisture, and soil  CO2 efflux were affected by different levels of N addition. Soil  CO2 efflux 
significantly increased with N addition, and N3 displayed the highest rate (174 ± 16.1 mg  CO2-C  m−2  h−1). Fine root biomass 
increased significantly in N3.
• Conclusion The predicted levels of N deposition in such plantations will probably lead to enhanced CO2 efflux from soils 
in reforested areas close to industrial sites in the Hyrcanian forest.

Keywords CO2 efflux · Enhanced nitrogen addition · Hyrcanian maple forest · Fine root growth

1 Introduction

Human activities such as consumption of fossil fuels, dis-
turbance of forests, land-use change, and agricultural ferti-
lization have substantially increased the rate of atmospheric 
Nitrogen deposition, specifically under the form of N oxides 
 (NOx) (Galloway et al. 2004; Dentener et al. 2006; Bob-
bink et al. 2010; Song et al. 2017). Although atmospheric 
nitrogen deposition has positive effect such as increased 
tree growth in N-limited forests (Wardle et al. 2004; Li 
et al. 2019; Liu et al. 2020), it has many negative ecologi-
cal effects on terrestrial and aquatic ecosystems, such as 
eutrophication and loss of biodiversity (Maskell et al. 2010; 
Janssens et al. 2010). Atmospheric deposition of N is already 
a serious problem in Europe and the USA; in addition, the 
fastest rate of increase in N deposition has been documented 
in the developing industrial regions of Asia (Mo et al. 2006; 
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Zhu et al. 2015a, b; Jia et al. 2016; Zheng et al. 2018). More-
over, atmospheric N deposition is predicted to increase from 
25–40 Tg per year to 60–100 Tg per year until the end of this 
century at global scale (Lamarque 2005; Zhang et al. 2014; 
Wei et al. 2020). Therefore, concern about the ecological 
effects of elevated N deposition on terrestrial ecosystems is 
currently increasing (Magill et al. 2004), especially on forest 
ecosystems (Keenan et al. 2015).

Chronic N deposition has many negative effects on forest 
ecosystems globally (Carter et al. 2017; Deng et al. 2018; 
Schulte-Uebbing and De Vries 2018; Shi et al. 2018) includ-
ing the biodiversity (Riofrío-Dillon et al. 2017; Vitousek 
et al. 1997), forest soils (e.g. decrease in pH and electrical 
conductivity (EC)), foliar chemistry, and soil biomass (Lupi 
et al. 2013; Novotný et al. 2016; Zhang et al. 2018; Gen-
tilesca et al. 2018; Tafazoli et al. 2019). Considering that 
forests are known as a sink for carbon (C) with an important 
role in the global C cycle (Naik et al. 2018), the impacts of 
increased N inputs on the forest soil organic carbon (SOC) 
dynamics and cycle are of great concern (Janssens et al. 
2010; Wieder et al. 2015; Chen et al. 2018). Since  CO2 
efflux from forest soils is through plant root respiration, rhi-
zomicrobial respiration, and soil organic matter decomposi-
tion (Jiang et al. 2010), N deposition can alter the rates of 
microbial N and C turnover, and thus affect the  CO2 efflux 
from forests’ soil (Liu and Greaver 2009).

Due to differences in vegetation and soil properties in 
different forests, the responses of soil  CO2 efflux and fine 
root biomass to N deposition may include promotion (Cleve-
land and Townsend 2006; Peng et al. 2011; Tu et al. 2011), 
decrease (Janssens et al. 2010; Ramirez et al. 2010), and no 
effect (Allison et al. 2008; Samuelson et al. 2009).To date, 
it is not clear how atmospheric N deposition affects the soil 
 CO2 efflux and fine root biomass in the Hyrcanian Forests; 
therefore, understanding how N additions alter these two 
factors still remains an important scientific challenge (Tu 
et al. 2013).

Iran, especially the northern part where the Hyrcan-
ian forests are located, is experiencing the release of a 
great amount of N into the atmosphere. The main sources 
include developing industrial regions, combustion of 
fossil fuels, and use of artificial fertilizers (Salahi et al. 
2014; Nobakht et al. 2018). The Hyrcanian forests, which 
were recently registered as a UNESCO World Heritage 
Site, are a green belt on the northern slopes of Alborz 
Mountains and cover the southern coasts of the Caspian 
Sea (SaghebTalebi et al. 2014). These forests are mixed 
deciduous and temperate forests; they appear to be very 
similar to the broadleaf forests of central Europe, north-
ern Turkey, and the Caucasus (SaghebTalebi et al. 2014). 
Unfortunately, degradation of Hyrcanian forests along 
with N deposition not only may have some negative local 
effect but also can have significant effects on the global C 

cycle. Since Hyrcanian forests are N-limited, N deposition 
can stimulate primary production and sequestration of C in 
these ecosystems (De Vries et al. 2006; Sutton et al. 2008; 
Högberg, 2012; Schulte-Uebbing and De Vries, 2018; Du 
and De Vries 2018; Schwede et al. 2018). However, when 
the levels of N deposition are high (e.g., above 1.5–2.5 g 
N  m−2  year−1, De Vries et al. 2014a), the stimulating effect 
on forest growth is likely to diminish over time due to the 
accompanying side effects, such as soil acidification and 
imbalances between N and other nutrients such as phos-
phorous (P), calcium (Ca), and magnesium (Mg) (Aber 
et al. 1998; Bowman et al. 2008; De Vries et al. 2014b; 
Du and Fang 2014; Schwede et al. 2018).

The wet deposition in the Iranian Hyrcanian forests is 
about 3–5 g N  m−2  year−1 (Salahi et al. 2014), which is 
considered as the critical amount (De Vries et al. 2014a). 
Despite the projection that the amount of N deposition in the 
Hyrcanian forests will be twofold (6–10 g N  m−2  year−1) by 
the end of this century (Galloway et al. 2008; Salahi et al. 
2014; Nobakht et al. 2018), the effect of N deposition on the 
 CO2 efflux and fine root biomass and their consequences in 
this ecosystem are still unclear. As a common act to plant 
pioneer trees such as Acer velutinum Bioss. near the indus-
trial areas after clearcutting, the main objective of this study 
was to quantify soil  CO2 efflux and fine root biomass in the 
different treatments of N addition to a maple (Acer velutinum 
Bioss.) plantation for the first time in Iran. It is hypothesized 
that the different rates of N addition (5, 10, 15 g N  m−2 
 year−1) significantly increase  CO2 efflux and fine root bio-
mass in the maple plantation.

2  Materials and methods

2.1  Study area

This study was carried out in a maple (Acer velutinum 
Bioss.) plantation in the educational and research forest of 
Darabkola, located in the Western Hyrcanian forests, Sari 
City, Mazandaran Province, Iran (53° 16′ East, 36° 31′ North 
and an elevation of 360 m asl). The maple plantation was 
established following the clearing of a natural forest in 1990 
(this stand is far from the industrial areas and highways in 
order to avoid the effect of those kinds of anthropogenic 
activities). The plantation area is 1.1 ha, and the average 
tree diameter (at breast height) and stand height is 20 ± 0.5 
cm and 19 ± 1 m, respectively. The average slope and main 
aspects are 20% and north-west, respectively. The mean 
annual rainfall (1992–2015) is 753 mm. November is the 
rainiest month (114 mm), and June is the driest one (26 
mm). The mean annual temperature is 18 °C (Anonymous 
1996).
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2.2  Experimental design

In April 2015, 12 rectangular 20- × 10-m plots were placed 
in a complete randomized design and each plot was sur-
rounded by a 10-m-wide buffer strip (Appendix Fig. 5). Four 
treatments of N addition with three replicates (i.e., 3 plots 
for each treatment) were selected: 5 g N  m−2  year−1 (N1), 10 
g N  m−2  year−1 (N2), 15 g N  m−2  year−1 (N3), and control 
(without N addition, N0) (Xian-Kaiet al. 2009). Nitrogen 
addition was conducted using ammonium nitrate  (NH4NO3) 
(Xu et al. 2007; Zhang  and Han 2012).

N was added through spraying on the forest floor (litter 
layer) in this study. Starting from April 2015, the solution 
was sprayed monthly (on the third or fourth day after rainfall 
events) on the forest floor under the canopy with a backpack 
sprayer. The control plots received 20 L of distilled water 
without N addition (Tu et al. 2011). The study started 1 
month after the first N addition and was carried out from 
May 2015 to April 2016.

2.3  Data collection

In April 2015, before the first N addition, three soil samples 
were taken from the topsoil layer (0–10 cm) in each plot 
(Xian-Kai et al. 2009; Wei et al. 2014; Liu et al. 2015), in a 
diagonal direction, using the coring method (diameter 8 cm; 
height 10 cm). Air-drying and grinding were performed, and 
the samples were passed through a 0.5-mm sieve. Then the 
physical and chemical properties of the soil were analyzed in 
the laboratory. Soil texture (hydrometer method, Bouyoucos 
1951), bulk density (volumetric core method), pH (digital 
pH meter, in a 1:2.5 soil/water suspension), EC (EC meter, 
in water-saturated soil extract at 20 °C; Anonymous 1980), 
total N (Kjeltec System-Instrument, TECATOR; Anony-
mous 1990; Vogt et al. 2015), NO−

3
(Manual Cd reduction 

method, APHA 1998), NH+

4
(manual indophenols colorimet-

ric method; Dorich and Nelson 1983), and organic carbon 
(Walkley and Black procedure) were measured.

Soil  CO2 efflux was measured using dynamic closed 
chambers. In April 2015, three polyvinyl chloride (PVC) 
collars (10 cm in diameter and 20 cm in height) were 
inserted into the soil at a depth of 10 cm (into organic and 
mineral soil), away from the edge of the plots, in order to 
measure soil  CO2 efflux (three points in each rectangular plot 
in a diagonal direction). Soil  CO2 efflux was measured once 
a month before each N addition by placing a PVC lid over 
each column and using the infrared method with a  CO2 port 
device (Messwert company GmbH-Göttingen), which was 
a developed version of the infrared gas analyzer, Edinburgh 
Sensors- Gascard II (Bekku et al. 1995; Hojjati 2008; Hojjati 
and Lamersdorf 2010). The measurement was done imme-
diately after closing the chamber. The soil  CO2 efflux was 
measured three or four days after the rainfall events in order 
to avoid any pulse effect of precipitation. All the measure-
ments were performed between 08:00 a.m. and 11:00 a.m. 
(local time).

Soil temperature (°C) and moisture were determined 
simultaneously with the soil  CO2 efflux measurements 
close to the soil collar in each plot (at three points in each 
rectangular plot in a diagonal direction). Soil temperature 
was measured using a digital thermometer (Model: 6300, 
Spectrum Technologies, Inc., USA) at the depth of 10 cm, 
and volumetric soil moisture was determined using a soil 
moisture meter (Model: DSMM500, General Tools and 
Instruments, New York, USA) at the depth of 10 cm.

Fine root biomass was measured seasonally (once in the 
mid-season). In each plot, three soil cores (diameter: 8 cm; 
height: 10 cm) were taken at the depth of 10 cm (Argiroff 
et al., 2019; Li et al., 2021). Fine roots were collected after 
washing with a 2-mm sieve. To measure dry weight, all the 
samples were dried in an oven at 85 °C (Zhang et al. 2014).

2.4  Statistical analysis

The effect of N addition treatments and month on soil 
temperature, moisture,  CO2 efflux, and fine root biomass 
were tested by Repeated measures analysis of variance for 

Table 1  Physical and chemical 
properties (mean values ± SE, 
n = 3) of soil (depth of 0–10 
cm) in each treatment in the 
Acer velutinum Bioss. stand 
before N addition (April 2015)

Soil properties Treatment plots

N0 N1 N2 N3

% Sand:Silt:Clay 58:30:12 50:34:16 60:28:12 56:30:14
Bulk density (g  cm−3) 1.72 ± 0.02 1.77 ± 0.02 1.69 ± 0.01 1.70 ± 0.02
pH 7.17 ± 0.01 7.20 ± 0.01 7.18 ± 0.01 7.12 ± 0.02
Electrical conductivity (dS  m−1) 0.89 ± 0.02 0.91 ± 0.01 0.90 ± 09 0.87 ± 03
Total N (g 100  g−1) 0.38 ± 0.01 0.37 ± 0.01 0.37 ± 0.01 0.39 ± 0.01
NH

+

4
 (mg  kg−1) 4.13 ± 0.13 4.08 ± 0.09 4.15 ± 0.07 4.19 ± 0.10

NO
−

3
 (mg  kg−1) 4.87 ± 0.05 4.79 ± 0.07 4.71 ± 0.08 4.85 ± 0.10

OC (g 100  g−1 soil) 3.94 ± 0.04 4.08 ± 0.18 3.85 ± 0.16 3.95 ± 0.06
Fine root biomass (g  m−2) 46.9 ± 0.95 47.1 ± 3.59 49.8 ± 0.73 46.8 ± 1.95
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the study period (significance was at 0.05 level). One-way 
ANOVA was used to test the difference in soil chemical 
properties in each treatment after N addition at the end of 
study period. Mean values in the text are averages of 3 plots 
per N addition treatment (N0, N1, N2, and N3). The rela-
tionships between soil  CO2 efflux and soil temperature were 
determined using nonlinear regression models (exponential 
equation, R = �e�T ). For the regression models, the standard 
error of estimation (Std. Err. Est) and the normalized root-
mean-square error (RMSE) were calculated. All the statisti-
cal analyses were performed using the IBM SPSS statistic 26 
software (USA). Excel software was used to draw statistical 
graphics.

3  Results

3.1  Soil properties

The results showed no significant difference in the soil 
properties between the treatments before the N addition 
(Table 1). At the end of the study period, N addition (N2 
and N3) led to lower soil pH and EC. Moreover, after the 

completion of the study period, the soil total N, ammonium 
( NH+

4
 ), and nitrate ( NO−

3
 ) were significantly higher in the N 

addition plots than the control plots and they also signifi-
cantly increased from N0 to N3 (Table 2).

There was no significant difference (P > 0.05) between 
each N addition treatments and the control for each month 
(Table 3). Soil temperature and moisture exhibited dis-
tinct seasonal patterns in all the treated plots. The highest 
and lowest soil temperatures were observed in July and 
January, respectively (Fig. 1a). The highest and lowest 
soil moistures were observed in January and July, respec-
tively (Fig.1b).

3.2  Effects of N addition on soil  CO2 efflux

ANOVA results revealed that N additions had a significant 
effect (P < 0.01) on soil CO2 efflux (Table 3). The highest 
N addition resulted in a higher rate of  CO2 efflux than the 
other treatments during the study period (Fig. 2a). In all 
plots, mean soil CO2 efflux was significantly higher during 
the growing season (spring and summer) than winter. The 
annual averages of  CO2 effluxes were 115 ± 3.00, 122 ± 7.3, 

Table 2  Total chemical 
properties (mean values ±SE, 
n = 3) of soil (depth of 0–10 
cm) in each treatment in the 
Acer velutinum Bioss. plantation 
after N addition at the end of 
study period (April 2016). 
Different letters represent 
significant differences between 
treatments within each property

Soil properties Treatment plots

N0 N1 N2 N3

pH 7.13 ± 0.01 a 7.08 ± 0.01 b 6.86 ± 0.01 c 6.76 ± 0.01 d
Electrical conductivity 

(dS  m−1)
0.84 ± 0.03 a 0.78 ± 0.01 b 0.75 ± 0.01 c 0.66 ± 0.01 d

Total N (g 100  g−1) 0.36 ± 0.01 d 0.41 ± 0.01 c 0.47 ± 0.02 b 0.58 ± 0.01 a
NH

+

4
(mg  kg−1) 4.93 ± 0.18 d 6.04 ± 0.14 c 7.23 ± 0.10 b 8.53 ± 0.17 a

NO
−

3
(mg  kg−1) 5.06 ± 0.18 d 7.21 ± 0.12 c 9.95 ± 0.30 b 20.5 ± 0.33 a

Table 3  ANOVA results on 
soil temperature, moisture, 
 CO2 efflux, and fine root 
biomass, based on repeated 
measurements (months, N 
addition, and their interaction 
during the study period)

ns not significant
**Significance at the level of 0.01
a Degree of freedom

Soil properties Source dfa Mean square F

Soil temperature Month 11 276.9 1044.009**

Month × Nitrogen addition 33 0.534 2.014**

Nitrogen addition 3 8.194 0.272ns

Soil moisture Month 11 333.387 154.666**

Month × Nitrogen addition 33 2.937 1.362ns

Nitrogen addition 3 2.172 0.182ns

Soil  CO2 efflux Month 11 21920.442 648.249**

Month × Nitrogen addition 33 698.675 20.662**

Nitrogen addition 3 24097.282 429.214**

Fine root biomass Season 3 11.942 13.674**

Season × Nitrogen addition 9 0.694 0.794ns

Nitrogen addition 3 42.360 18.494**
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141 ± 10.7, and 174 ± 16.1 mg  CO2-C  m−2  h−1 in N0, N1, 
N2, and N3, respectively.

Soil  CO2 efflux followed a seasonal pattern with maxi-
mum and minimum during summer and winter, respectively 
(Fig. 2). The rates for  CO2 efflux in the control plots ranged 
from 76.0 ± 1.7 mg  CO2-C  m−2  h−1 in July to 175 ± 6.1 mg 
 CO2-C  m−2  h−1 in January. There was no significant differ-
ence between N0 and N1; however, a significant difference 
was observed between N0, N2, and N3. Soil CO2 efflux 
was exponentially related to the soil temperature (Fig. 3). 
Exponential relationships between the soil  CO2 efflux and 
soil temperature were significant (P < 0.01) for all the treat-
ments with R2 values between 0.81 and 0.87.

3.3  Effects of N addition on root biomass

The results indicated an effect of N addition (P < 0.01) on 
fine root biomass (Table 3). There was no difference between 
N0, N1, and N2; however, fine root biomass was significantly 
higher in N3 than the other treatments (Table 4). The rela-
tionship between soil  CO2 efflux and fine root biomass was 
exponential (Fig. 4). Exponential relationships between fine 
root biomass and soil  CO2 efflux were significant (P < 0.01) 
for all the treatments with R2 values between 0.41 and 0.59.

4  Discussion

According to the results, N additions increased the avail-
able N concentration at the end of the study period. Nitro-
gen addition directly affects the soil N cycling by enhanc-
ing the available N and also has an indirect effect on the 
rate of nutrient input by altering the litter decomposition 
and nutrient release. Geng et al. (2017) and Zhang et al. 
(2019) reported that the N addition significantly increased 
the available N in the soil. In the N-limited forest eco-
systems such as Hyrcanian forests, adding N to the soil 
can increase the net N mineralization in the forest floors, 
which can increase the available concentration of N in the 
soil (Gundersen et al. 1998; Zhu et al. 2015a, b; Gao et al. 
2015; Ye et al. 2018).

In the current study, N additions significantly 
decreased soil pH and EC. Reduction in soil pH follow-
ing N additions has been reported in other studies as well 
(Hong et al. 2019; Guo et al. 2010; Yang et al. 2012; Yang 
et al. 2015). Nitrogen addition is known as the main cause 
of the reduction of soil pH (Guo et al. 2010; Yang et al. 
2012, 2015). Adding N to the soil, especially as NO−

3
, may 

enhance the co-leaching loss of the base cations (e.g.,  K+, 
 Ca2+, and  Mg2+) (Gundersen et al. 2006; Lu et al. 2018).

The present results showed that N2 and N3 (10 and 
15 g N  m−2  year−1) significantly increased annual soil 
 CO2 efflux. Increased soil  CO2 efflux by N addition has 
also been reported in previous studies (Tu et al. 2013; 
Gao et al. 2014; Deng et al. 2018; Li et al. 2019; Zhao 
et al. 2020). There was no significant difference between 
the different treatments in the terms of soil temperature, 
moisture, or physical and chemical properties before the 
N addition. Therefore, it can be stated that the difference 
in the  CO2 efflux in the different treatments might have 
been caused by the N addition. Soil  CO2 efflux includes 
heterotrophic and autotrophic respiration and is mainly 
regulated by the size of the soil microbial population, 
amount of fine roots, and biomass of litter (Baggs 2006). 
It has been reported that adding N to N-limited forests, 
such as the Hyrcanian forest soils in this study, can 
increase the soil  CO2 efflux rate (Li et al. 2019; Zhang 
et al. 2017b). Moderate addition of N to N-limited forests 

Fig. 1  a Seasonal variations 
(mean ± SD; n = 3 per month) 
of the soil temperature; b 
seasonal variations (mean ± 
SD; n = 3 per month) of the soil 
moisture measured at control 
plot (no N addition) at depth of 
10 cm

Fig. 2  Seasonal variations (mean ± SD; n = 3 per month) of soil CO2 
efflux measured at different level of N addition (N0: Control, N1: 5, 
N2: 10, and N3:15 g N  m−2  year−1)
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may increase the N content of soil and thus decrease the 
soil C/N, which is beneficial to the microbial biomass 
and activity as well as the plant growth (Chu et al. 2010; 
Li et al. 2016) and therefore enhances soil  CO2 efflux. 
Moreover, the addition of N to the soil increases the 
decomposition rates of leaf litter and fine root, which pro-
vides more substrates for the microbial communities and 
finally increases the microbial biomass (Li et al. 2016), 
enzyme activity, and microbial respiration. On the other 
hand, C input from the additional aboveground litter and 
decomposed roots eventually enters into the soil organic 

matter and stimulates heterotrophic respiration (Bowden 
et al. 2004; Phillips et al. 2007). Burton et al. (2004) 
also claimed that NO−

3
 addition increased the soil  CO2 

efflux in a sugar maple stand in Michigan during the first 
year of the investigation. A similar response to N addi-
tions (5 and 15 g N  m−2  year−1) has been observed in an 
oak (Quercus velutina) dominated hardwood in Harvard 
Forest, with increased soil  CO2 efflux occurring in the 
first year of N addition (Bowden et al. 2004). Mo et al. 
(2008) in their study in an old-growth broadleaf forest 
(monsoon evergreen) observed that N deposition (50 kg 
N  ha−1  year−1) enhanced soil  CO2 efflux and high N addi-
tion rates (≥ 100 kg N  ha−1  year−1) reduced it, whereas 
N1 (50 kg N  ha−1  year−1) had no significant effect and 
N2 (100 kg N  ha−1  year−1) increased the soil  CO2 efflux 
in the present study. Some studies have shown the declin-
ing or insignificant effects of N deposition on soil  CO2 
efflux (Burton et al. 2004; Jiang et al. 2010; Wei et al. 
2014; Samuelson et al. 2009; Krause et al. 2013). These 
inconsistent results might be related to the N addition 
rates, initial N condition of the soil, soil properties, and 
the tree species (Gao et al. 2015; Li et al. 2019).

Fig. 3  Relationships between soil CO2 efflux and soil temperature measured at different levels of N addition (N0: Control, N1: 5, N2: 10, and 
N3:15 g N  m−2  year−1); Std. Err. Est standard error of estimate, NRSME normalized RMSE

Table 4  The fine root biomass (g  m2) (mean values ± SE) in different 
treatments. Different letters represent significant differences between 
treatments within each season (the starting point of this study was 
summer and finished at the end of spring)

Summer Fall Winter Spring

N0 48.6 ± 1.21 b 46.6 ± 0.60 b 47.2 ± 0.31 b 48.2 ± 0.67 b
N1 49.0 ± 0.65 b 47.3 ± 0.19 b 47.0 ± 0.59 b 48.2 ± 0.41 b
N2 49.9 ± 0.32 b 47.8 ± 0.43 b 47.6 ± 0.53 b 49.9 ± 0.56 b
N3 52.8 ± 0.61 a 51.3 ± 1.21 a 50.1 ± 0.45 a 52.2 ± 0.44 a

29   Page 6 of 11 Annals of Forest Science (2021) 78: 29



1 3

The results of the current study confirmed that soil 
 CO2 efflux was exponentially related to soil tempera-
ture. This is in line with findings in the temperate forests 
(Bowden et al. 2004; Samuelson et al. 2009) and the sub-
tropical/tropical moist ones (Mo et al. 2008). Moreover, 
noticeable exponential and linear relationships between 
soil  CO2 efflux and soil temperature have been reported 
for other vegetation types (Fang and Moncrieff 2001; 
Samuelson et al. 2004; Jassal et al. 2007; Wang et al. 
2019). In the present study, the soil  CO2 efflux in the 
maple plantation stand exhibited a strong seasonal pat-
tern, which reached the maximum rate in the midsum-
mer and the minimum rate in the late winter. Distinct 
seasonal patterns of the soil efflux relevant to the soil 
temperature and moisture and plant growth have also 
been found in other studies (Contosta et al. 2011; Du 
et al. 2011; Wang et al. 2019).

The treatment of N3 (15 g N  m−2  year−1) significantly 
increased fine root biomass. Increased fine root biomass by 
N addition (8-12 g N  m−2  year−1) has also been reported 
in various studies (Cleveland and Townsend 2006; Xu and 
Wan 2008; Song et al. 2017; Li et al. 2019; Wang et al. 

2019; Ren et al. 2019). According to the minimum limiting 
factors theory, the increase of N in the soil may intensify 
the deficiency of other nutrients in the soil. Fine roots need 
to increase root growth to uptake more nutrients (Wang 
et al. 2013; Zhang et al. 2020). Yan (2017) reported that 
the deposition of N to soil may decrease the fine root sur-
face area, but can increase the thickness of fine roots and 
subsequently may result in an increase in the total biomass 
of the fine roots. Other studies have found that trees at dif-
ferent growth stages exhibit different characteristics due to 
their ecological plasticity; fine root production and turno-
ver rates of young trees usually increased with the increase 
of soil N availability (Børja et al. 2008; Jagodzinski and 
Katuckd 2011; Xiong et al. 2018).

5  Conclusions

The current study presented new data on the soil  CO2 efflux 
in the Hyrcanian forest. According to the results, increased 
N availability (10 and 15 g N  m−2  year−1) and increased 
temperature stimulated the fine root biomass, which was 

Fig. 4  Relationships between soil CO2 efflux and fine root biomass measured at different N addition (N0: Control, N1: 5, N2: 10, and N3:15 g N 
 m−2  year−1); Std. Err. Est Standard Error of Estimate, NRSME normalized RMSE
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observed along with an increase in the soil  CO2 efflux in the 
maple (Acer velutinum Bioss.) plantation stand. N addition 
(10 and 15 g N  m−2  year−1) led to a lower soil pH and EC, 
and all N addition treatments (5, 10, and 15 g N  m−2  year−1) 
led to an increase in soil total N, NH+

4
 , and NO−

3
 at the end of 

the study period. It is projected that the amount of N deposi-
tion in the Hyrcanian forests might be doubled by the end 
of this century (6–10 g N  m−2  year−1); therefore, soil CO2 
efflux due to N deposition could be an important challenge 
in the future. Since the effect of N addition on forest stands is 

a long-term and complex process, further long-time studies 
would be needed to clarify the response of the root respira-
tion and enzyme activity to increased N availability. Such 
studies in these valuable forests could lead to a comprehen-
sive understanding of the effects of the increased N amount 
on the C cycle.

Appendix

Fig. 5  Layout of the experimen-
tal design (N1: 5, N2: 10, and 
N3:15 g N  m−2  year−1)
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