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rate are driven by environmental factors after fire in a cold temperate
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Abstract
& Key message During the non-growing season, environmental factors changed after fire, leading to significantly increased non-
growing season soil heterotrophic respiration (Rh) and potentially decreasing the amount of net C stored in cold temperate forest
ecosystems of China.
& Context Intensifying forest fire regimes are likely to influence future C budgets of forest ecosystems. However, the mechanism
of fire disturbance on the components of non-growing season soil respiration rate (Rs) and its environmental factors are not fully
understood, creating uncertainties for future C sink estimates under climate change scenarios.
&Aims This study examined the effects of recent fire on non-growing season (November 2017 to April 2018) Rs, its heterotrophic
(Rh) and autotrophic (Ra) components, and Q10 in a cold temperate forest in northeast China.
& Methods Soil CO2 effluxes (including Rh and Ra) were measured using an Li-8100 portable automatic measuring system for
soil C flux (Li-Cor, Inc.; Lincoln, NE, USA). Soil temperature and moisture were measured using a temperature probe (Licor
p/n8100–201) and soil volumetric water content probe (ECH20 167 EC-5; p/n 8,100,202), respectively, at a depth of 5 cm;
snowpack depth was measured with a ruler.
& Results During the non-growing season, fire significantly increased the Rh by approximately 47% in burned stands. TheQ10 of
Rh significantly increased from 2.39 in the unburned stands to 3.12 in the burned stands. An interaction between soil temperature
and snowpack depth was the driving environmental factor controlling the non-growing season soil respiration and its components
after fire disturbance.
& Conclusion Fire is a potent factor on the components of the soil respiration and should not be ignored in forest ecosystem C
cycling, especially during the non-growing season as it is vulnerable to micro-environmental variation. Long-term studies
involving diverse ecosystems are required to better elucidate mechanisms that have been found during the non-growing season
Rs under an increasing trend of fire occurrence.
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1 Introduction

Forest ecosystems are predominantly sinks for atmospheric
CO2 (Gower et al. 2001; Trumbore et al. 2015). However,
disturbances caused by climatic extremes and human activi-
ties (e.g., wildfire, storm, drought, prescribed burning, nitro-
gen addition, and land use management) can significantly and
rapidly affect the C cycle of forest ecosystems and its feed-
back to the atmospheric system (Fang et al. 2018; Frank et al.
2015; Hu et al. 2017b; Plaza-Álvarez et al. 2017; Sheng et al.
2009). In recent years, extreme climate events, such as inten-
sified El Niño and drought, which are associated with climate
warming, have meant that the frequency, severity, and burn
area of wildfires are expected to increase in the near future
(Abatzoglou andWilliams 2016; Santin et al. 2016; Seidl et al.
2017). Quantifying the effect of forest fire disturbance on the
C dynamics of forest ecosystems is a key component for low-
ering the uncertainties associated with C sink estimates
(Kasischke and Stocks 2000; Liu et al. 2014; Schimel and
Baker 2002).

Soil respiration (Rs) is the sum of soil autotrophic respira-
tion (Ra) (from root systems and root-associated microorgan-
isms) and soil heterotrophic respiration (Rh) (from the decom-
position of organic material by free-living microbes) (Chen
et al. 2016b; Davidson and Janssens 2006; Luo and
Zhou 2006). Soil respiration is the second largest C efflux
(80–98 Pg C·yr−1) in terrestrial ecosystems and the global Rh

from soils has been estimated at 53–57 Pg C·yr−1 (Bond-
Lamberty and Thomson 2010). A recent study observed that
the soil surface Rh:Rs ratio significantly increased from 0.54 to
0.63 between 1990 and 2014 due to environmental change
(Bond-Lamberty et al. 2018). Functionally, disturbance (e.g.,
wildfires) can have significant effects on soil respiration com-
ponents such as Rh and while the control of soil respiration
components by some environmental factors has been identi-
fied, how each environmental factor interacts with disturbance
remains an open question (Harmon et al. 2011).

Many studies have focused on forest soil respiration during
the growing season (Chen et al. 2016a; Decina et al. 2016;
Pries et al. 2016; Zhou et al. 2016) and have estimated the
annual soil respiration by assuming that the respiration efflux
is near zero during the non-growing season (Fahnestock et al.
1998). However, other studies have shown that the non-
growing season soil respiration could account for 2–37% of
annual soil respiration and that it significantly affects the C
balance of forest ecosystems (Brooks et al. 2005; Wang et al.
2006; Wang et al. 2013; Wang et al. 2014b). Forest fire dis-
turbance can alter both the input and output of organic C
stored in the soil. Thus, a remaining challenge is to understand
the variation and dominating environmental factors of the
non-growing season Rs and its components (Rh and Ra) after
fire disturbance (Song et al. 2018). In particular, the response

of Rh to forest fire might be the key factor influencing the
amount of net C stored in forest ecosystems.

The degree of influence of fire on the soil C pool depends
on fire severity and duration (Marañón-Jiménez et al. 2011).
Soil respiration and its components are potentially controlled
by the variation of soil environmental factors after fire distur-
bance (Pereira et al. 2016). For instance, forest fires can affect
soil respiration by decreasing vegetation cover and increasing
albedo, which can increase soil temperatures and litter decom-
position rates (Jiang et al. 2015; Throop et al. 2017).
Additionally, fire can increase soil hydrophobicity, which
may indirectly control the components of soil respiration by
reducing soil moisture infiltration and increasing surface run-
off (O’Donnell et al. 2009). Previous studies have indicated
that soil temperature and moisture are the dominant environ-
mental factors of soil respiration variation during the growing
season (Raich and Schlesinger 1992; Yi et al. 2020).

The northern hemisphere has a greater area of winter snow
compared to the southern hemisphere, and snow in the north is
much more vulnerable to climate change (Cohen and
Entekhabi 1999; Danco et al. 2016). Snow creates an insulat-
ing layer that might increase soil temperature, and soil tem-
perature and moisture changes after disturbance have a strong
effect on the snow-cover depth (Groisman et al. 1994; Uchida
et al. 2005). The interaction effect between environmental
factors can change biological and chemical processes such
as microbial decomposition, enzyme and rhizosphere organ-
ism activity (Monson et al. 2006; Tucker et al. 2014).
However, few studies have focused on the effect of environ-
mental factors on the components of the soil respiration during
the non-growing season, leading to great uncertainty about the
variation in soil respiration during the non-growing season
(Barba et al. 2018; Hibbard et al. 2005; Rustad et al. 2001).

In the present study, we used a Quercus mongolica
forest immediately after fire disturbance. The objectives
of the study were to determine how wildfires affect the
non-growing season components of soil respiration and to
determine the dominating environmental factors that drive
variation in soil respiration after fire disturbance. We pos-
tulated that the components of soil respiration are poten-
tially controlled by interactions among soil environmental
factors such as soil temperature, soil moisture and snow
depth that are altered by a fire event. In a previous study,
a forest fire was found to significantly decrease Ra (Hu
et al. 2017b); thus, we hypothesized that the non-growing
season total Rs was dominated by soil Rh after fire distur-
bance. As snowpack is an important environmental factor
during the non-growing season and is vulnerable to tem-
perature change, we further postulated that snowpack
depth may be related to fire disturbance and that it will
influence the components of the non-growing season soil
respiration (Rh and Ra).
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2 Materials and methods

2.1 Study area

The present study was conducted at the Maoershan Forest
Ecosystem Research Station, northeast China (45°20′–45°25′
N, 27°30′–127°34′ E, 400 m above sea level). The parent
material is granite bedrock, and the soil is classified as a
Haplumbrepts in the United States Soil Taxonomy (Soil
Survey Staff 2014). The climate is continental monsoon with
a dry and cold winter. The annual total precipitation varies
from 600 mm to 800 mm, of which ~50% falls between
June and August (summer dominated). The mean annual,
maximum, and minimum air temperatures are 2.7 °C,
18.0 °C, and −12.1 °C, respectively. During the sampling
years (2017–2018), the maximum and minimum air tempera-
tures were 32.5 °C and −31.2 °C, respectively. Snowpack
lasted for 154 days, with the snowpack depth varying from 0
to 31.2 cm, with a mean depth of 14.1 cm. The dominate tree
species of our research stand is Q. mongolica (> 80% total
basal area) and mixed with naturally regenerated tree species
that include Betula platyphylla and Populus davidiana. The
dominant herb species during the study period were Anisodus
acutangulus, Adenocaulon himalaicum, Dryopteris
crassirhizoma, and Aegopodium alpestre.

2.2 Site description

In the present study, the non-growing season experimental
period was from mid-November 2017 to mid-April 2018
and was approximately 150 days. The definition of the
non-growing season follows that of previous phenological
studies (Piao et al. 2007; Xu et al. 2017), meta-analysis of
the winter ecosystem (Wang et al. 2011) and C flux re-
search of temperate Korean Pine (Pinus koraiensis Sieb.
et Zucc.) in the Maoershan area (Wang et al. 2013). The
first span of at least 5 days with daily mean air tempera-
tures below 5 °C was defined as the start of the non-
growing season. Similarly, the first span of 5 days with
daily mean air temperatures above 5 °C was defined as
the end of the non-growing season. The freeze-thaw cycle
(FTC) period in spring was defined as 5 cm of soil above
0 °C (i.e., the start of the snowmelt), to the end of the
non-growing season (i.e., the snow completely melted).
The non-growing season included the snow-cover winter
period and the FTC period (Table 1).

In April 2016, forest fires caused by lightning occurred
at Maoershan Forest Ecosystem Research Station, north-
east China. The total area burned was approximately
500 ha and provided an opportunity for us to study the
effects of fire disturbance on soil respiration and its com-
ponents. The burn severity was moderate in the burned

area; severity was determined by the depth of the burned
organic soil, the consumption of the aboveground bio-
mass, tree mortality, and the bark char height (Keeley
2009). In the burned area, approximately 50% of the un-
derstory shrubs were burned, the bark char height was
1.8–2.4 m and tree mortality was approximately 36%.
We selected three replicate stands in the burned area to
conduct our investigation and selected nearby unburned
areas as the control stands. The size of each stand was
400 m2 (20 m × 20 m) and all stands were established in
April 2017. The specific information of the stands and
soil characteristic is shown in Table 2. The leaves of
Q. mongolica were persistent; a large number of leaves
did not fall off the trees and instead existed in the canopy
even in the non-growing season, which led to the differ-
ence in canopy coverage between the control and the
burned stands in the non-growing season.

3 Soil CO2 efflux and its environmental factors

Soil CO2 effluxes (including Rh and Ra) were measured using
an Li-8100 portable automatic measuring system for soil C
flux (Li-Cor, Inc.; Lincoln, NE, USA). Five polyvinylchloride
(PVC) soil rings (internal diameter 19 cm and height 7 cm) for
measuring Rs were randomly placed in each stand. A
trenching approach was used to separate Rh and Ra. Three
trenched plots in each stand were dug down to either bedrock
or to a maximum depth of 80 cm, each encompassing an area
of 1.5 m × 1.5 m. All roots within the trenches were severed
and plastic lining was installed to inhibit root and mycorrhizal
in-growth, and ground vegetation was absent (Liu et al. 2016;
Zeng et al. 2016). All PVC rings remained in the same posi-
tion throughout the study period. Soil CO2 effluxes measured
from trenched plots were assumed to be Rh. Ra was calculated
as the difference between the mean values of Rs and Rh in each
stand. All trenched plots were established in May 2016, ap-
proximately 12 months before the measurement of soil respi-
ration and its components, to ensure that the disturbance
caused by trenching on soil respiration and its components
had subsided. The soil CO2 efflux measurement method in
the corresponding unburned control stands was the same as

Table 1 Timing of the non-growing season, winter period, and spring
freeze-thaw cycle (FTC) period

Duration Days

Non-growing season Mid-November 2017 to mid-April 2018 150

Winter period Mid-November 2017 to mid-March 2018 120

FTC period Mid-March 2018 to mid-April 2018 30
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that for the burned stands. Soil CO2 effluxes were measured
monthly from November to April in 2017–2018. The mea-
surement time lasted approximately two minutes for each soil
respiration ring. Each measurement was conducted from
9:00 am to 11:00 am for a total of 48 (30 non-trenched soil
rings forRs + 18 trenched soil rings for Rh) measurements over
2 days.

Soil temperature and moisture were measured using a tem-
perature probe (Licor p/n8100–201) and soil volumetric water
content probe (ECH20 EC-5; p/n 8,100,202), respectively, at
a depth of 5 cm; snowpack depth was measured with a ruler.
The measurement of soil temperature, moisture, and snow-
pack depth was synchronized with the measurement of soil
CO2 effluxes (Hu and Sun 2021).

3.1 Models of soil respiration and its components

An exponential model and the temperature sensitivity of soil
respiration (Q10) were used to describe the relationship be-
tween soil respiration and soil temperature, which was deter-
mined by fitting the exponential function (see Eq. (1) and Eq.
(2) below) for burned and unburned control stands (Lloyd and
Taylor 1994):

SR ¼ αeβT ð1Þ

Q10 ¼ e10β ð2Þ

where SR is the measured total soil respiration and its com-
ponents (Rh and Ra), T is the soil temperature (°C) at 5 cm, α
and β are regression coefficients, e is the nature constant, and
Q10 is the factor by which soil respiration and its components
increase during a temperature increase of 10 °C.

To describe the relationship among soil respiration and soil
moisture and the depth of the snowpack, linear, exponential,
and quadratic functions were tested for using the data from
burned and unburned control stands (Eqs. 3–8); we selected
the best fitted model based on higher R2 results (Davidson
et al. 1998; Lai et al. 2012):

SR ¼ αþ βW ð3Þ
SR ¼ αeβW ð4Þ
SR ¼ αþ βWþ ωW2 ð5Þ
SR ¼ αþ βS ð6Þ
SR ¼ αeβS ð7Þ
SR ¼ αþ βSþ ωS2 ð8Þ
where SR is the measured total soil respiration and its com-
ponents (Rh and Ra); W is the soil moisture (%) at 5 cm; S is
snowpack depth (cm); and α, β, and ω are the constant values
of the regression model coefficients.

3.2 Statistical analysis

Data were processed and analyzed using R statistical software
version 3.5.2 (R Core Team 2018), using R packages “car”
(Fox 2012), “agricolae” (Mendiburu 2017), and “lavann”
(Rosseel 2012). Differences in variables between the burned
and control stands were tested by analysis of variance
(ANOVA) and comparisons between means were performed
using the least-significant differences test. Repeated-measures
ANOVA was used to determine the direct and interactive
effect of fire disturbance and measurement date on soil respi-
ration components (Rs, Rh, and Ra), soil temperature, soil
moisture, and snowpack depth. Linear, exponential, and qua-
dratic function models were used to evaluate the relationship
among the soil respiration components (Rs, Rh, and Ra) and
environmental factors (soil temperature, soil moisture, and
snowpack depth). Structural equation modeling (SEM) was
used to determine how environmental factors affected soil
respiration. A conceptual meta-model was developed, includ-
ing direct and indirect pathways between theoretical drivers of
the components of soil respiration. Only the environmental
factors that had a significant correlation with the components
of soil respiration were included in the meta-model.
Parameters were linked to the model either directly or as a
composite variable. Non-significant P-values (P > 0.05) of
the chi-square test in SEM suggest a good fit between the
model and data. Differences were considered statistically sig-
nificant at P-values < 0.05.

4 Results

4.1 The effect of fire disturbance on soil
environmental factors

The average soil temperature of the non-trenched control and
burned stands was −2.73 ± 1.68 °C and −0.91 ± 1.38 °C, re-
spectively. The soil temperature of the trenched control and
burned stands was −1.98 ± 2.56 °C and −0.22 ± 1.04 °C, re-
spectively (Fig. 1a and b). The soil temperature of the non-
trenched control and burned stands showed a similar variation
over time, decreasing at the beginning of the non-growing
season and remaining at its minimum value from December
2017 to January 2018, after which there was an increasing
trend to the end of the non-growing season, reaching the max-
imum value from March to April 2018.

The average soil moisture of the non-trenched control and
burned stands was 50.14 ± 15% and 34.98 ± 4.81%, respec-
tively. The average soil moisture of the trenched control and
burned stands was 56.10 ± 6.64% and 32.74 ± 9.87%, respec-
tively (Fig. 1c and d). The average snowpack depth at the non-
trenched control and burned stands was 14.07 ± 3.05 cm and
10.45 ± 3.30 cm, respectively. The average depth of
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snowpack at the trenched control and burned stands was
13.58 ± 6.64 cm and 10.74 ± 2.66 cm, respectively (Fig. 1e
and f). No significant differences in soil temperature, soil
moisture, or snowpack depth were detected between the
trenched and non-trenched plots at the different areas
(Table 3). Soil temperature was significantly higher at the fire
disturbed stands than at the control stands, whereas the soil
moisture and average snowpack depth were significantly low-
er in the fire disturbed area than in the control stands (Table 3).
The measurement date had a significant effect on the soil
temperature and snowpack depth; however, it did not have a
significant effect on soil moisture. Therefore, soil moisture did
not show a significant dynamic variation trend similar to that
of soil temperature and snowpack depth during the non-
growing season (Table 3).

4.2 Effect of fire disturbance on soil respiration and its
components

Rs, Rh, and Ra all showed significant variation during the sam-
pling period (Fig. 2). The Rs trend followed that of the soil
temperature in that there was an increasing trend during the
non-growing season (Fig. 2a). The mean values of Rs in the
control and burned stands was 0.59 ± 0.19 μmol CO2 m

−2 s−1

and 0.72 ± 0.15 μmol CO2 m
−2 s−1, respectively. The average

Rs was not observably significantly different between the two
treatments (P > 0.05; Table 4).

The dynamic patterns of Rh were similar to those of Rs

and showed a similar trend to that of soil temperature
(Fig. 2a and b), whereas the dynamic pattern of Ra follow-
ed that of snowpack depth, which showed a single peak
and maximum values in February (Fig. 2c). The mean
non-growing season Rh in the control and burned stands
was 0.32 ± 0.14 μmol CO2 m−2 s−1 and 0.47 ± 0.15 μmol

Fig. 1 Non-growing season soil
temperature, soil moisture at a
depth of 5 cm, and depth of
snowpack measured at non-
trenched (a, c, and e) and trenched
(b, d, and f) plots in control and
burned stands. Error bars repre-
sent standard deviations, and the
shadowed period indicates the
spring freeze-thaw cycle (FTC).
Values represent the average of
three technical replications and
repeated measurements

Table 3 Results (F-values) of repeated-measures analysis of variance
on the effects of fire disturbance (F), measurement date (D), trench effect
(TE), and their interaction on soil temperature (T, °C), soil moisture (W,
%), and snowpack depth (S, cm)

T W S

F 9.975** 45.702*** 22.008***

D 80.635*** 0.484 85.575***

TE 1.614 0.426 0.095

F×D 0.841 0.818 2.512*

F×TE 0.002 2.066 0.921

D×TE 0.723 0.838 0.211

F×D×TE 0.587 0.415 0.01

*, **, and *** represent significance at P < 0.05, 0.01, and 0.001,
respectively
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CO2 m
−2 s−1, respectively. The average non-growing sea-

son Rh in the burned stands was significantly higher than
the control stands by approximately 47% (P < 0.05)
(Table 4). The mean non-growing season Ra in the control
and burned stands was 0.27 ± 0.09 μmol CO2 m

−2 s−1 and
0.25 ± 0.07 μmol CO2 m−2 s−1, respectively. No signifi-
cant differences were found between the Ra in the control

stands and that in the burned stands (P > 0.05) (Table 4).
Compared with the control stand, the average Rh:Rs in-
creased from 0.57 ± 0.18 to 0.66 ± 0.19 in the burned
stands (Fig. 6 in Appendix). Compared with the entire
non-growing season, the FTC period increased Rs, Rh,
and Ra 1.8, 1.9, and 1.6 times, respectively, in the control
stands. In the burned stands, Rs and Rh increased by 1.6
and 1.9 times, respectively. There was no change between
the non-growing season Ra and the FTC Ra in the burned
stands (Table 6 in Appendix).

4.3 Relationships among soil respiration components
and environmental factors

The exponential regressions with soil temperature as a single
controlling factor for Rs, Rh, and Ra were significant (P < 0.01)
for both control and burned stands. However, only Rh showed
a significant quadratic relationship with soil moisture in the
control stand (Fig. 3, Tables 5, and 7 in Appendix).

The quadratic function regressions with the snowpack
depth as the single explanatory variable of Rs, Rh, and Ra were
the best fitted models to describe the relationship among
snowpack depth and soil respiration and its components
(Fig. 3, Tables 5, and 7 in Appendix). In the control stands,
snowpack depth pack showed a significant relationship with
Rh and Ra; snowpack depth showed a significant relationship
with soil Rs, Rh, and Ra in the burned stands (Fig. 3 and
Table 5).

Based on the model fitting results, soil temperature and
snowpack depth were introduced in the structural equation
model to describe the relationship between Rs and its compo-
nents (Rh and Ra) and soil environmental factors. All structural
equation models fitted well (P > 0.05), explaining approxi-
mately 86.1%, 84.9%, and 66.6% of the variation for Rs, Rh,
and Ra, respectively (Fig. 4).

The structural equation models revealed direct effects of
environmental factors on Rs, Rh, and Ra, and also helped ex-
plain the interaction effect between soil temperature and the
snowpack depth composite. The structural equation models

Table 4 Results (F-values) of repeated-measures analysis of variance of
the effects of fire disturbance (F), measurement date (D), and their inter-
action on soil total respiration (Rs) (μmol CO2 m

−2 s−1), soil heterotrophic
respiration (Rh) (μmol CO2 m

−2 s−1), and soil autotrophic respiration (Ra)
(μmol CO2 m

−2 s−1)

Rs Rh Ra

F 1.081 5.291* 0.01

D 81.156*** 43.789*** 33.047***

F×D 0.001 1.962 1.264

* and *** represent significance at P < 0.05 and 0.001, respectively

Fig. 2 Dynamic variations of the non-growing season (a) total soil res-
piration rate (Rs), (b) soil heterotrophic respiration (Rh), and (c) soil au-
totrophic respiration (Ra) in control and burned stands. The shadowed
period indicates the spring freeze-thaw cycle (FTC). Values represent
the average of three technical replications and repeated measurements
with standard deviations
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revealed that soil temperature directly affected Rs, Rh, and Ra
(Fig. 4). Although Rs and its components (Rh and Ra) all
showed significant quadratic relationships with snowpack
depth, this composite only had a significant direct effect on
Rs and Ra (Fig. 4).

4.4 Changes in Q10 induced by fire disturbance

Compared with the control stands, the Q10 of Rs and Ra

was lower by approximately 6.8% and 15% than that in
the burned stands, respectively; however, these results
were not significant (P > 0.05) (Fig. 5 and Table 5). The
Q10 of Rh in the burned stands was significantly greater
by approximately 27.3% than that of the control stands
(P < 0.05) (Fig. 5 and Table 5).

5 Discussion

5.1 Seasonal variation of the non-growing season soil
respiration and its components

In the present study, the mean Rs during the non-growing season
in the temperateQ. mongolica forest was 0.59 ± 0.19 μmol CO2

m−2 s−1. This result was higher than that of a previous study that
found that the non-growing season Rs in a boreal forest ecosys-
tem of China was 0.29 ± 0.06 μmol CO2 m−2 s−1 (Hu et al.
2017a). This difference might be due to a lower temperature
occurring in the higher latitudes of China. We found synchro-
nous responses toRs andRh with a peak inmid-April, whereasRa
tended to follow the dynamics of snowpack depth, which
showed a single peak curve with maximum values occurring in
February (Fig. 2). In agreement with our hypothesis, Rh

Fig. 3 Relationships between soil total respiration (Rs) and its components (Rh and Ra) and soil temperature (Fig.3a–c), soil moisture (Fig.3d–f), and
snowpack depth (Fig.3g–i) in control and burned stands. Equations and statistical parameters are shown in Table 5
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stemming from the microbial decomposition of soil organic mat-
ter was the dominant component during the non-growing season
Rs. Several studies indicated that Rh dominated Rs during the
non-growing season (Gaumont-Guay et al., 2008; Hanson
et al., 2000; Jiao and Wang, 2019; Savage et al., 2013; Tucker
et al. 2014). At the same time, the non-growing season Rh

accounted for a larger proportion of Rs than in the growing sea-
son (Ruehr and Buchmann, 2010; Shi et al., 2012; Tang et al.,
2005). This may be caused by a difference in how Rh and Ra
respond to soil environmental changes (Li et al., 2013; Zou et al.,
2018). Our results indicated that Rh was more sensitive to envi-
ronmental changes than Ra in the non-growing season. Despite
the low temperature in the non-growing season, soil microbes
were still active and were the dominant biotic controller of the
non-growing season Rh due to the regulatory effect of snowpack
depth (Yi et al., 2020). Several studies have shown that the du-
ration and depth of snow cover can significantly influence soil
temperature and that correspondingly, soil temperature can ma-
nipulate snow depth, which could therefore significantly influ-
ence Rs and its components (Gavazov et al. 2017; Nobrega and
Grogan 2007; Reinmann and Templer 2018; Uchida et al. 2005).
Our finding highlights that the interaction coupling effect be-
tween soil temperature and snowpack depth must be considered
when studying the components of non-growing season Rs (Gao
et al. 2018).

5.2 Effects of fire disturbance on non-growing season
soil respiration and its components

Our findings show that fire has different effects on non-
growing season Rs. Non-growing season Rh was significantly
increased by approximately 47% after fire disturbance and

Rh:Rs increased from 0.57 to 0.66, whereas the non-growing
season Ra showed no change after fire. This result is in agree-
ment with our hypothesis that the non-growing season Rs was
dominated by Rh after fire disturbance. The non-growing sea-
son Rs increased after fire disturbance; however, this increas-
ing trend was not significant for the non-growing season Ra
after fire disturbance. There are several reasons to explain our
findings, the first being that fire changes the quality and quan-
tity of detritus, which may promote higher decomposition
rates by microbes. Our results agree with the finding from a
previous study of increased Rs in a boreal forest of interior
Alaska after prescribed burning, which was mainly attributed
to higher Rh after fire disturbance (Kim 2013). Fire burned the
vegetation and soil organic layer, which increased the avail-
ability of nutrients, thus promoting microbial activity and
changing the decomposition rate (Song et al. 2017;
Wüthrich et al. 2002). Second, post-fire environmental factors
control the variation of components of non-growing season Rs
after fire disturbance. Forest fires decrease the forest canopy,
which will directly increase the soil temperature after fire dis-
turbance (Munozrojas et al. 2016). Owing to the persistent
leaves of Q. mongolica, canopy cover of the burned stands
was lower than that of the control stands in the non-growing
season, which directly led to the higher surface solar radiation
of non-growing season in the burned stands. In the present
study, soil temperature significantly increased by approxi-
mately 2 °C after fire disturbance and snowpack depth and
organic material layer depth were significantly decreased in
the burned stands. Recent studies have shown that non-
growing season Rs is almost entirely driven by microbial de-
composition, which is a temperature-dependent biological
process, and that soil temperatures between −2 °C and 0 °C

Table 5 Parameters of the equations for the relationship of soil respiration and its components (Rs, Rh, Ra) (μmol CO2 m
−2 s−1) with soil temperature

(T), soil moisture (W), and snowpack depth (S) (cm) for the control and burned stands.

Factor Control stands Burned stands

Equation R2 P Q10 Equation R2 P Q10

f(T)

Rs=0.512e
0.093T 0.459 *** 2.53 ± 0.58 Rs=0.5623e0.0859 T 0.686 *** 2.36 ± 0.55

Rh=0.2773e
0.0873T 0.546 *** 2.39 ± 0.47 Rh=0.3619e0.1144 T 0.84 *** 3.12 ± 0.57

Ra=0.2365e
0.0989T 0.311 *** 2.69 ± 0.70 Ra=0.2129e0.0827 T 0.549 *** 2.29 ± 0.58

f(W)

Rs=−0.7126+0.0608 W-0.0006W2 0.075 NS Rs=−2.1717+0.1997 W-0.0033W2 0.102 NS

Rh=−3.4022+0.1151 W-0.0008W2 0.373 * Rh=−3.4022+3.5239 W-5.0490W2 0.062 NS

Ra=−0.7044+4.3104 W-4.3739W2 0.124 NS Ra=−0.8713+0.0889 W-0.0019W2 0.287 NS

f(S)

Rs=1.0853–0.0879S+0.0027S
2 0.293 NS Rs=1.3473–0.1315S+0.0044S

2 0.454 *

Rh=0.6576–0.0439S+0.0010S
2 0.343 * Rh=1.011–0.1071S+0.0036S

2 0.442 *

Ra=0.4654–0.05S+0.0018S
2 0.51 ** Ra=04088–0.04146S+0.0019S

2 0.386 *

Statistically significant levels: NS, not significant; *, **, and *** represent significant at P < 0.05, 0.01, and 0.001, respectively
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strongly affect substrate supply and soil microbial activity
(Monson et al. 2006; Tucker 2014). We therefore suggest that
higher soil temperature and changed substrate supply from
burned debris may be driving the increase of non-growing
season Rh:Rs after fire.

Fire severity has a strong effect on the components of non-
growing season Rs with the effect of fire depending on severity
and duration, which may account for the divergence in our Rs
response to fire (Czimczik et al. 2006; Meigs et al. 2009; Nave
et al. 2011; Richards et al. 2012; Song et al. 2018; Uribe et al.
2013). High severity fires have greater negative effects on eco-
system processes than that of low severity fires (Dooley and
Treseder 2012; Martínez-García et al. 2017; Plaza-Álvarez

et al. 2017). Previous studies have shown that the non-growing
season Rs of Dahurian Larch in the high latitudes of China de-
creased by approximately 55% in burned stands, which may be
attributed to the decrease of Ra after a high severity fire (Hu et al.
2017a). This is because high severity fires result in the understory
shrubs, litter, and duff layers being completely burned, causing
damage to plant roots (Hu et al. 2017a; O’Donnell et al. 2009).
This result is inconsistent with the findings from our study, pos-
sibly because the fire in our study was only of medium severity.
The rapid recovery of pioneer vegetation after fire promoted the
recovery of plant roots, which may be the main reason why there
was no significant difference in non-growing season Ra between
the control and burned stands (Hart et al. 2005; Johnson and
Curtis 2001).

Recent meta-analyses and long-term experiments have
shown that global Rh is increasing, probably in response to
environmental changes; therefore, climate-driven losses of
soil C are currently occurring across many ecosystems, with
a detectable and sustained trend emerging at the global scale
(Crowther et al. 2016; Melillo et al. 2017; Wang et al. 2014a;
Zhou et al. 2016). Our results indicate that an increase in forest
fire frequency might accelerate the process of C loss in said
ecosystems within the context of global warming and the in-
tensification of the El Niño effect (Jolly et al. 2015; Yin et al.
2016). Fire disturbance will convert live vegetation into dead
material that decomposes, changes ambient soil conditions
and temporally decreases the ability of the ecosystem to gain
C via plant photosynthesis, which in turn will change the
relationship between net primary production (NPP) and net
ecosystem production (NEP) (Keeley 2009; Smithwick et al.
2007). Fire could then drive NEP (i.e., NEP =NPP – Rh) to be

Fig. 4 Structural equation model
describing the influence of soil
temperature and snowpack depth
as drivers of soil total respiration
(Rs) and its components (Rh and
Ra) after fire disturbance. Solid
boxes represent observed
variables, while the hexagonal
box depicts a composite variable
(to account for a polynomial
model structure). Single and
double headed arrows represent
relationships and correlations
between variables, respectively;
the strength and sign of
relationships and correlations are
depicted by standardized path
coefficient. *, **, and ***
represent significance at P < 0.05,
0.01, and 0.001, respectively

Fig. 5 Temperature sensitivity (Q10) of non-growing season soil total
respiration (Rs), soil heterotrophic respiration (Rh), and soil autotrophic
respiration (Ra) in control and burned stands. Different letters represent
significance at P < 0.05. Values presented represent the average of three
technical replications and repeated measurements with standard
deviations
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negative, and the ecosystem to become a source of C to the
atmosphere (Harmon et al. 2011). Thus, fire as a potent factor
should not be ignored in forest ecosystems, especially during
the non-growing season as it is vulnerable to micro-
environmental variation.

5.3 Effect of environmental factors on non-growing
season soil respiration and its components

Previous studies have reported that the components of soil
respiration exponentially increased with temperature increase
during both the growing and non-growing seasons
(Bondlamberty et al. 2004; Mo et al. 2005; Monson et al.
2006; Yi et al. 2020). Our study showed that wildfire in-
creased the non-growing season Rs. Consistent with our hy-
pothesis and results from previous studies, snow depth as an
insulating layer influences the non-growing season (i.e., win-
ter) respiration (Aanderud et al. 2013; Brooks et al. 2011;
Wang et al. 2010). Although snowpack depth decreased in
the burned stands, it still had a significant quadratic function
relationship with Rs and components after fire. Thus, the in-
teraction between soil temperature and snowpack depth was
the driving environmental factor controlling the non-growing
season soil respiration and its components after fire
disturbance.

Previous studies have found that higher soil moisture stim-
ulated soil respiration when the soil water content was below
optimum (Rey et al. 2011; Yohannes et al. 2011). Although
we did find lower soil moisture in the burned stands, probably
due to the higher solar radiation and thinner snow depth, soil
moisture did not show a significant correlation with the non-
growing season Rs and its components after fire disturbance.
This result may be due to the non-growing season soil mois-
ture being abundant (> 30%) in the burned stands. Therefore,
the effects of soil moisture on the non-growing season Rs and
its components were minor or were counterbalanced by other
environmental factors after fire.

In our study, the mean Q10 of the non-growing season Rs
were 2.53 and 2.36 in the unburned control and burned stands,
respectively. The results were higher than the global scale
estimate (1.69) (Zhou et al. 2009). In addition, compared with
the unburned control stands, the Q10 of Rh was significantly
greater in the burned stands (2.39 vs. 3.12), whereas there was
no significant difference in Q10 of Ra between the unburned
control stands and burned stands (2.69 vs. 2.29). These results
were inconsistent with a previous study in which a high se-
verity fire decreased the growing season Q10 of Rs and Rh in a
forest of boreal China (Hu et al. 2017b). These contrasting
results might be attributed to the high severity fire destroying
the plant root structure and a loss of the labile fraction of soil
organic C to the atmosphere, which restrained root and rhizo-
sphere respiration and limited soil microorganisms activity
(Conant et al. 2011; Thornley and Cannell 2001). Rh was the

dominant component of the non-growing season soil respira-
tion efflux. The mean Rh of the FTC period was 1.9 times
greater than the non-growing season; Rh accounted for 71%
to 84% during this period. The higher temperature and soil
nutrients could provide more activation energy based on
Arrhenius kinetic theory. Activation energy is one of the dom-
inant abiotic factors that is directly related to the substrate
supply (Schipper et al. 2014). More recalcitrant substrates in
burned areas, which are complex molecules and have higher
activation energy, should have higher temperature sensitivity
than those in unburned areas (Davidson and Janssens 2006;
O’Neill et al. 2006). Therefore, the higher solar radiation and
temperature combined with soil nutrient content in the burned
areas could promote the microbial decomposition leading to
the higher non-growing season Q10 of Rh after fire (Mikan
et al. 2002; Pan et al. 2013).

In the present study, we found that fire led to the non-
growing season Rh significantly increasing after a fire distur-
bance. Considering that temperate and boreal forests have
been experiencing a significant increasing trend of fire occur-
rence caused by global warming and cold months have been
facing even faster warming than the growing season during
the past decades (Hantson et al. 2015; Jolly et al. 2015; Piao
et al. 2007; Zhang et al. 2013), our study suggests that forest
fires create an increase of non-growing season Rh:Rs, which
will potentially decrease the amount of net C stored in forest
ecosystems.

6 Conclusion

In summary, the present study explored the effects of recent
fire disturbance on the components of non-growing season Rs
(Rh and Ra) as well as their Q10 in a cold temperate forest in
northeast China. Our results revealed that forest fires signifi-
cantly increased the non-growing seasonRh and also drove the
Rh:Rs increase that was found in burned stands. The Q10 of Rh

significantly increased in the burned stands. The interaction
between soil temperature and snowpack depth was the driving
environmental factor controlling the non-growing season soil
respiration and its components after fire. Our study highlights
that fire is a potent factor on the components of the soil respi-
ration and should not be ignored in forest ecosystem C cy-
cling, especially during the non-growing season as it is vul-
nerable to micro-environmental variation. Considering that
temperate and boreal forests have been experiencing a signif-
icant increasing trend of fire occurrence caused by global
warming and that cold months have been facing even faster
warming than the growing season during the past decades,
long-term studies involving diverse ecosystems are required
to better elucidate mechanisms that have been found during
the non-growing season Rs under an increasing trend of fire
occurrence.
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Appendix

Fig. 6 Variation of the ratio of soil heterotrophic respiration rate (Rh) to
soil total respiration (Rs) in the control (a) and burned stands (b). Values
represent the average of three technical replications and repeated
measurements with standard deviations

Table 6 Average values of Rs
(μmol CO2 m

−2 s−1), Rh (μmol
CO2 m

−2 s−1), and Ra (μmol CO2

m−2 s−1) of the non-growing sea-
son and FTC period in the control
and burned stands

Non-growing season FTC period

Control stands Burned stands Control stands Burned stands

Rs 0.59 ± 0.19 0.72 ± 0.15 1.07 ± 0.40 1.15 ± 0.25

Rh 0.32 ± 0.14 0.47 ± 0.15 0.64 ± 0.30 0.91 ± 0.31

Ra 0.27 ± 0.09 0.25 ± 0.07 0.43 ± 0.12 0.24 ± 0.07
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