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Abstract
& Key message Model simulation results suggest that forests in the Sierra Nevada mountains of California will tend to
increase in density and basal area in the absence of fire over the next century, and that climate change will favor increases
in drought-tolerant species.
& Context Climate change is projected to intensify the natural summer drought period for Mediterranean-climate forests. Such
changes may increase tree mortality, change species interactions and composition, and impact ecosystem services.
& Aims To parameterize SORTIE-ND, an individual-based, spatially explicit forest model, for forests in the Sierra Nevada,
and to model forest responses to climate change.
& Methods We use 3 downscaled GCM projections (RCP 8.5) to project forest dynamics for 7 sites at different elevations.
& Results Basal area and stem density tended to increase in the absence of fire. Climate change effects differed by species,
with more drought-tolerant species such as Jeffrey pine (Pinus jeffreyi A.Murray bis) and black oak (Quercus kelloggii
Newb.) exhibiting increases in basal area and/or density.
& Conclusion Increasing forest density may favor carbon sequestration but could increase the risk of high-severity fires.
Future analyses should include improved parameterization of reproduction and interactions of disturbance with climate
effects.

Keywords Individual-basedmodel, Climate change, Coniferous forest,Pinus,Quercus, Abies

1 Introduction

Climate change impacts on forests have been a major research
focus due to their importance for carbon storage (Oren et al.
2001; Bonan 2008; Earles et al. 2014) and other crucial

functions (Flint et al. 2013; Goulden and Bales 2014;
Grossiord et al. 2014), as well as the concern that long gener-
ation times could limit tree responses (Rice and Emery 2003;
Aitken and Whitlock 2013). The forests of the Sierra Nevada
mountains in California are adapted to a dry summer/wet
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winter Mediterranean climate. However, climate change is
expected to intensify the water cycle, resulting in more ex-
treme drought and precipitation (IPCC 2013; Reidmiller
et al. 2018). Recently, the “hot drought” of 2012–2016
(Swain et al. 2014) was followed by extremely wet years in
2017 (Murray and Lohman 2018) and 2019 (CDWR 2019).

Such changes are expected to impact forest demography.
“Background” mortality rates of adult trees in the western
USA have increased due to temperature-associated increases
in aridity (van Mantgem et al. 2009). Extreme droughts can
produce mass mortality events (Allen et al. 2010); The 2012–
2016 California drought killed over 100 million trees, with
some local mortality rates exceeding 60% (Fettig et al.
2019). Growth of all age classes and seedling recruitment
are affected by climate too. Our recent analysis found that
hotter summer temperatures reduced the survival and growth
of most species of Sierra Nevada tree seedlings (Moran et al.
2019). Shifts in forest composition have already been ob-
served. A combination of fire suppression and climate change
led to increasing forest density, decreasing numbers of large
trees, and a greater abundance of shade-tolerant conifers dur-
ing the twentieth century (Dolanc et al. 2014b; McIntyre et al.
2015). At lower elevations, oaks have become more abundant
relative to pines (Dolanc et al. 2014b; McIntyre et al. 2015),
and models predict further shifts in from needle-leaf to broad-
leaf species (Lenihan et al. 2003; Liang et al. 2017).

Forest responses depend on the demographic responses of
different species and life stages, and on species interactions.
Because of the long timescales involved — both for tree
lifecycles and the timelines of projected climate change —
simulation models are crucial for better understanding forest
dynamics in a changing environment. Individual-based forest
simulators account for the interaction of each tree with the
environment and the other individuals and species on the land-
scape, bridging the gap between small-scale individual-based
studies and landscape studies. No individual-based forest sim-
ulator has been previously parameterized for the Sierra
Nevada.

SORTIE-ND (http://sortie-nd.org/index.html) was origi-
nally developed for broadleaf forests in the Eastern USA
(Pacala et al. 1996; Martin et al. 2010), but has since been
used for multiple forest types (Uriarte et al. 2009; Bose et al.
2015; Ameztegui et al. 2017). Competitive interactions, based
on the sizes of neighboring trees, can be accounted for.
SORTIE-ND has accessible source code and a website
(http://www.sortie-nd.org) where users can share newly de-
veloped functions. This accessibility was the main reason we
chose this model for our study; comparisons to other models
are discussed in Appendix 1. This paper documents the
species-level parameterization of SORTIE-ND; we plan to
incorporate individual-level variation and heritability of cli-
mate responses in future iterations.

We test the performance of the model by hindcasting the
dynamics of three plots at different elevations. Then we pro-
ject the forest responses to changing climate over the next
century for seven plots at different elevations, using down-
scaled forecasts from the most recent Coupled Model
Intercomparison Project (CMIP5) (IPCC 2013). We predicted
that:

1. Total basal area will increase over time in most of these
scenarios, as suggested by past densification and the pos-
itive growth responses of many species to warmer winters
(Aubry-Kientz and Moran 2017).

2. Changes in tree density will depend on initial stand struc-
ture (many small trees that undergo self-thinning vs. a few
larger trees).

3. Species that are found in hotter/drier environments or that
show more positive growth or survival response to higher
temperatures will tend to increase in abundance and/or
basal area in the climate change scenarios relative to the
control scenario.

2 Materials and methods

2.1 The simulator

In SORTIE-ND each tree has a DBH (diameter at 1.4 m),
species, xy coordinates, and status: seedling, sapling (<1.4 m
tall, non-reproductive), or adult. Minimum adult DBH was
computed with a linear model predicting DBH from age cal-
ibrated with Forest Inventory and Analysis (FIA) data (https://
www.fia.fs.fed.us/), and the species’ minimum reproductive
age (Burns and Honkala 1990). At each time step, trees repro-
duce, grow, and/or die; behaviors can depend on environmen-
tal variables. Values for all parameters and names of SORTIE-
ND behaviors are given in Appendix 1.

2.2 Forest data

Tree allometry relationships were calculated from FIA data,
using the R package MakeMyForests (https://github.com/davis-
research/MakeMyForests). Demographic data come from 26
long-term forest plots maintained by the US Geological Survey
(USGS) in Sequoia and Yosemite National Parks (Aubry-Kientz
and Moran 2017; Moran et al. 2019). Data include 10 years of
seedling censuses and 17–34 years of adult mortality (annual)
and growth (~ 5 year intervals). Ten species were included in our
analyses: white fir (Abies concolor (Gordon & Glend.) Lindl. ex
Hildebr.; ABCO), red fir (Abies magnifica A.Murray bis;
ABMA), incense cedar (Calocedrus decurrens (Torr.)Florin;
CADE), lodgepole pine (Pinus contorta Bol.; PICO), Jeffrey
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pine (P. jeffreyi A.Murray bis; PIJE), sugar pine (Pinus
lambertiana; PILA), western white pine (Pinus monticola
Douglas ex D.Don; PIMO), ponderosa pine (Pinus ponderosa
Douglas ex Lawson; PIPO), canyon live oak (Quercus
chrysolepis; QUCH), and California black oak (Q. kelloggii
Newb.; QUKE). The analyses of adult growth (Aubry-Kientz
and Moran 2017) and survival and growth of seedlings (Moran
et al. 2019) have been published. Plot characteristics and analyses
of fecundity and adult mortality are described in Appendix 2 and
Appendix 3.

2.3 Choice of climate variables

We limited the number of climate variables per behavior to two
for simplicity and computational efficiency. For adult growth, the
two best climate predictors were January minimum temperature
and precipitation (Aubry-Kientz and Moran 2017) and for adult
mortality July maximum temperature and precipitation
(Appendix 2). For the survival of seedlings >10 cm in height,
the best-fit model included July maximum temperature and total
precipitation anomalies averaged over the current and past year,
while for growth the current year Julymaximum temperature and
total snow performed better (Moran et al. 2019). However, pro-
jections for snow are highly uncertain because they combine
already uncertain precipitation projections with calculations of
how much falls as snow and the melt rate. As current year pre-
cipitation also predicted seedling growth well, we used this and
July maximum temperature for both seedling growth and surviv-
al. Table 1 shows the direction of climate effects on seedlings
versus trees/sapling growth and survival.

2.4 Model behaviors

2.4.1 Growth

Annual diameter growth (ΔDj,t) for adults and saplings is
computed as:

ΔDi;t∼N β0;s þ β1Di;t þ β2 ∑
j¼1

Ni;t D j;t

disti; j
þ β3;sJMnt þ β4;sPt;σ

2
g

 !

where i indicates individual, s species, and t year; Ni,t the total
neighbors of i in year t; Dj,t the DBH of neighbor j; disti,j the
distance between i and j; JMnt
the minimum January temperature; and Pt the precipitation.
The β’s are estimated parameters, with σg

2 representing the
error term.

Seedling behaviors in SORTIE-ND are usually based on
diameter at 10 cm height. As our data were recorded by height
bin without diameter, we created four size classes: 0 (new
seedlings); 1 (> 2 years old but < 10 cm); 2 (10–50 cm); and
3 (50–140 cm). Transitioning to the next size class is a
Bernoulli process:

logit θi;t
� � ¼ β0;s þ β1BAt þ β3JMxt þ β4Pt

where θi,t is the probability of transitioning; BAt is the total
adult tree basal area in a 10-m radius; and JMxt is the maxi-
mum July temperature. β0,s represents a size-specific intercept
for size class s. Our model was fitted to seedlings that were >
10 cm tall. The size-specific parameter for class 1 was there-
fore based on seedlings that died back. The same parameter
was applied to class 0.

2.4.2 Mortality

Adult and sapling mortality is modeled as a Bernoulli process:

logit θi;t
� � ¼ β0;s þ β1;sDBHt þ β2;sDBH

2
t þ β3;s ∑

j¼1

Ni;t D j;t

disti; j

þ β4JMxt þ β5Pt

where θi,t is the probability of dying (Appendix 2).
For seedlings, survival is also a Bernoulli process:

logit θi;t
� � ¼ β0;s þ β1BAt þ β4JMxt þ β5Pt

where θi,t is the probability of surviving. Class 0 seedlings
were initially given the size effect estimated for seedlings
<10 cm (Moran et al. 2019), but this resulted in an unrealistic
increase in tree density (A4) because the established seedlings
( >10 cm) used to fit the model tend to have much higher
survival than younger seedlings. Therefore, the class 0 and 1
size effects were “hand-tuned” (see Appendix 4 for an
explanation). The parameters had to be reduced (from
−2.57) most for C. decurrens and A. concolor, which have
very small seeds and first-year seedlings, and the least for
P. jeffreyi and P. lambertiana, which have large seeds and
robust seedlings. All species had a maximum local adult BA
beyond which we never observed seedlings. Therefore, if lo-
cal adult BA exceeds the threshold (Appendix 1), the proba-
bility of seedling survival is set to 0.

2.4.3 Reproduction

In order to reduce computation time, we implicitly combine
seed dispersal and germination, such that the “seeds” actually
represent first-year seedlings. The fecundity and dispersal
functions are parameterized based on the distribution of first-
year seedlings relative to adult trees (Appendix 3), and germi-
nation probability is set to 1.

Fecundity is simulated with a zero-inflated Poisson (ZIP)
distribution: some individuals produce zero offspring (with
probability p), while others produce offspring according to a
Poisson distribution with parameter λ. Where zj,t is the num-
ber of new seedlings from tree j in year t:
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P zj;t ¼ 0
� � ¼ pþ 1−pð Þe −λð Þ 0≤p≤1

P zj;t ¼ k
� � ¼ 1−pð Þ λke−λ

� �
k

!0≤λ≤∞

Many of our tree species exhibit masting— locally synchro-
nized mass seed production (Koenig et al. 2015; Gallego
Zamorano et al. 2018).We therefore used two ZIP distributions
for masting and non-masting years respectively (Appendix 3).
The probability of masting is based on time since the last mast:

y ¼ 1

1þ X
a

� �b
where y is the probability of masting, X is years since last mast,
and a and b are fitted parameters.

We modeled dispersal using a two-dimensional Student’s
(2Dt) distribution (Clark et al. 1999a):

mi;t ¼ ∑ Jg
j¼1A

1

πu 1þ
d2
i; j
u

� �2 zj, t where mi, t is the number of

first-year seedlings found in quadrat i of area A in year t; di, j
the distance between i and tree j; J the total potential parent
trees; zj, t the number of first-year seedlings produced by j; and
u the shape parameter of the 2D-t function. Because first-year
seedlings are difficult to identify to species, the dispersal and
fecundity model was fit at the genus level (Appendix 3).

2.5 Hindcasting

We ran 20 simulations using historical climate sequences for
three 1 ha USGS plots — POFLABMA (1999–2014), and
BBBPIPO and UPLOG (1997–2013) — obtained from the
California Basin Characterization Model (CA BCM) model,
which downscales 800-km-scale global climate data to 270 m

(Flint et al. 2013a). Initial plot maps used coordinates and 1997
or 1999DBHof adult trees in these plots replicated 9 times in a 3
× 3 array (Appendix 1, Fig. 7). The buffer “ring” of replicated
plots compensates for edge effects. To create a seedling map, we
calculated the 1999 density within seedling subplots of classes 2
and 3, which are less affected by year-to-year variation, and
replicated this density across the whole plot. We then compared
the tree density and basal area for each species in the central
square to measured values. We also compared species-level av-
erages for individual growth and mortality. For this, we used
only the trees initially present in the plot, so that the youngest
trees would not skew the comparison.

2.6 Simulating climate change responses

Once the model appeared to be capturing the past behavior, we
projected forest dynamics for seven plots: the three hindcasting
plots plus four new 0.8 ha plots established in Sequoia National
Park in 2015 (Table 2). Annual projected climate sequences for
2006–2099 were downloaded from CA BCM for three global
climate models (GCMs) and one emissions pathway: RCP 8.5, a
“worst-case scenario” that would be expected to produce the
strongest effects. While this pre-Paris Climate Accord pathway
may be avoided with the initial Nationally Determined
Contributions, warming of 2.5–4 °C by 2100 (between RCP
4.5 and 6) would still occur (IPCC 2013; Rogelj et al. 2016);
several countries, including theUSA, had notmet thoseNDCs as
of 2020 (Roelfsema et al. 2020). Different GCMs produce dif-
ferent outcomes from RCP 8.5: MIROC represents a relatively
hot-dry scenario; CCSM amoderate-warm scenario; and CNRM
a relatively warm-wet scenario (Appendix 1; Fig. 8). For each
plot, a control climate sequence (“current”) was created from
historical 1974–2014 sequences randomly sampled for the same
number of time steps.We ran ten replicates for each site-scenario
combination.

Table. 1

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

JulMax SS:-
SG:-
AS:+

SS:-
SG:+
AS:+

SS:-
SG:-
AS:+

SS:-
SG:+
AS:-

SS:-
SG:+
AS:+

SS:-
SG:-
AS:-

SS:+
SG
AS:+

SS:-
SG:+
AS:-

SS:-
SG:-
AS:+

SS:-
SG:-
AS:+

JanMin AG:+ AG:+ AG:- AG:- AG:+ AG:+ AG:+ AG:- AG:- AG:+

Precip SS:-
SG:-
AS:+
AG:+

SS:-
SG:-
AS:+
AG:-

SS:+
SG:-
AS:+
AG:+

SS:+
SG:-
AS:+
AG:+

SS:+
SG:-
AS:-
AG:-

SS:+
SG:-
AS:+
AG:-

SS:+
SG:-
AS:+
AG:+

SS:+
SG:-
AS:+
AG:+

SS:+
SG:+
AS:-
AG:+

SS:+
SG:+
AS:-
AG:-
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3 Results

3.1 Hindcasting

In nearly all cases, the observed mean species-level adult growth
or mortality was within the 95% CI for the simulations and vice
versa (Table 3). Where there were exceptions, the simulated
mean was within the observed range, but the observed mean
was higher than the simulated range. Measured total BA and
density fell within or close to the 95% CI of 20 model runs for
most species in most plots. However, A. concolor BA and den-
sity were somewhat overestimated in UPLOG, andC. decurrens
BA in BBBPIPO and A. magnifica density in POFLABMA
were underestimated (Fig. 1).

3.2 Climate change responses

Initial tree densities across plots ranged from 387.5 to 1189
trees/ha and total BA from 52.46 to 108.28 m2/ha. There was
no correlation between initial tree density and initial BA, and

while the lowest elevation plot (BBBPIPO) had an unusually
high tree density, there was otherwise no relationship between
tree density and elevation. There was, however, a trend toward
higher initial tree BA at higher elevations (p = 0.17, adjusted
R2 = 0.20; Appendix 5).

Total tree BA and stem density increased over the 93-
year simulations in all sites except the very dense lowest
elevation site, where stem density decreased by about 20%
in all scenarios (Figs. 2 & 3 and Appendix 5). Density
increases in the other sites ranged from 41.8 to 527.6%
and tended to be related negatively to initial density and
positively to elevation, though this was not statistically
significant (Appendix 5). Basal area increases ranged from
13.2 to 62.7% and also tended to be positively related to
elevation (Appendix 5). The “warm-wet” scenario
(CNRM) resulted in the greatest BA increase and the low-
est drop in density at BBBPIPO, as well as the highest
increase in BA and density at SP. Response to climate
scenarios varied substantially by species. Pinus monticola,
P. concolor, and Q. chrysolepis are omitted from the fol-
lowing species-level discussion due to low abundance.

Table. 2 Plot elevation, basal area (BA) when first recorded, and number of trees + saplings total and by species. * Hindcast plot. SNP, Sequoia
National Park; YNP, Yosemite National Park; Burn, most recent prescribed burn

BBBPIPO* SP SJP SJ UPLOG* SJM POFLABMA*

Park SNP SNP SNP SNP SNP SNP YNP

Plot size (ha) 1 0.8 0.8 0.8 1 0.8 1

Elevation (m) 1609 1806 2170.5 2197.6 2210 2350 2542

Burn - Pre-2014 Pre-2014 - - - -

Initial BA (m2)
# trees

63.82 55.52 79.53 78.15 52.46 83.55 108.28

1189 455 310 659 416 473 600

A. concolor (BA, #) 8.56 24.56 57.8 43.43 42.86 20.1 -

147 149 226 469 366 116

A. magnifica (BA, #) - - 2.25 34.52 0.002 58.59 105.1

8 179 1 319 565

C. decurrens (BA, #) 27.54 0.41 4.58 - 0.96 - -

630 5 32 14

P. contorta (BA, #) - - - - - 1.86 3.18

14 35

P. jeffreyi (BA, #) - - 7.1 0.04 0.56 - -

30 4 5

P. lambertiana (BA, #) 1.6 6.13 3.73 0.16 8.06 - -

65 54 7 7 28

P. monticola (BA, #) - - - - - 3 -

24

P. ponderosa (BA, #) 11.31 15.0 4.07 - - - -

31 123 7

Q. chrysolepis (BA, #) 0.04 0.61 - - - - -

40 24

Q. kelloggii (BA, #) 14.69 8.8 - - 0.02 - -

276 100 2
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Of the two fir species, A. magnifica always increased in
basal area and density, while A. concolor lost BA under cli-
mate change in sites SJP and SJM (Figs. 2, 3, 4). A. concolor
also exhibited less BA growth under climate change relative to
the control at SP and SJ, and reduced density increases at
multiple sites. Abies magnifica, on the other hand, exhibited
similar density changes across scenarios and a greater increase
in BA under climate change in higher elevation plots.

Increases in P. lambertiana BA and density were reduced by
warming in the two lowest elevation plots but increased under
moister scenarios at SJ. At SJP and UPLOG, P. lambertianaBA
declined but density increased substantially; with warming, the
decline in BA was more pronounced and the increase in density
smaller. P. ponderosa declined in BA and increased in density
for all site-scenario combinations except for SP-Control, SJP-
Control, and SJP-MIROC (“hot-dry”) where BA increased
(Figs. 2, 3, 4, 5, 6). Pinus jeffreyi increased in both density and
BA at SJP andUPLOG,more so in the climate change scenarios,
while at SJ they only increased substantially with climate change
(Figs. 2, 3, 4).

Calocedrus decurrens decreased in density in all scenar-
ios while usually increasing in BA (Figs. 2 & 3). The
only site-scenario combination that decreased in cedar
BA was SP-CCSM (“moderate-warm”) but, as there
are very few cedars at this site, that could have been
due to stochasticity. Warming favored increased BA of
Q. kelloggii (Figs. 2 & 5), while stem density always
decreased, but less so with warming at SP and UPLOG
(Figs. 3 & 6).

4 Discussion

Our results suggest that, in the absence of disturbance, forests
in the southern Sierra Nevada would likely increase in stem
density and basal area over the coming decades (Figs. 2 & 3),
particularly at sites with low current density or high BA. The
direction of change in total density and BA was the same for
the three RCP 8.5 scenarios and 1974–2014 “control” at all
sites, as well as for most site-species combinations. Therefore,
we chose not to run scenarios RCP 6.0 or 4.5, as these would
almost certainly fall within the same range. For instance, total
BAwould still likely increase a similar amount across all sites,
while C. decurrens BA at UPLOG would increase more than
the control but less than the RCP 8.5 scenarios. Site-level
variation was much higher than between scenarios. The stem
density decrease at the lowest site, BBBPIPO, was likely due
to higher mortality among the smallest stems, as average per-
tree BA increased at this site across all scenarios despite mod-
est total BA increases, a pattern that was also seen to a lesser
extent in site SJ; increased recruitment decreased average tree
BA at the other sites (Fig. 14, Appendix 5). Species-level
responses varied more by climate scenario, though site-level
variation was still considerable; changes were often consistent
in direction between scenarios within a site.

While firs continued to dominate, A. concolor performed
worse under warmer conditions at 4 out of 6 sites, while
A. magnifica performed as well or better. This is consistent
with the individual demographic behaviors: Higher tempera-
tures favored more positive demographic rates in A. magnifica

Table. 3 Average individual observed and simulated growth and mortality rates over 16 years, 95% confidence interval in brackets

Observed mean annual
growth (cm)

Simulated mean annual
growth (cm)

Observed mean annual
mortality (%)

Simulated mean annual
mortality (%)

BBBPIPO

A. concolor 1.842 [0.17–4.63] 0.817 [0.41–1.42] 0.851 [0–2.82] 1.118 [0–2.88]

C. decurrens 1.119 [0.1–2.8] 0.541 [0.15–1.05] 1.276 [0.33–4.05] 0.796 [0.17–1.53]

P. lambertiana 1.645 [0.2–4.7] 0.754 [0.41–1.24] 2.072 [0–5.54] 3.03 [0–8.1]

P. ponderosa 1.887 [0.22–4.27] 0.956 [0.05–2.14] 1.79 [0–10.06] 1.379 [0–6.79]

Q. chrysolepis 0.6 [0.1–2.85] 0.443 [0–8.39] 1.029 [0–5.37] 0.947 [0–5]

Q. kelloggii 0.925 [0.1–2.1] 0.607 [0.6–1.36] 1.296 [0.15–3.23] 1.027 [0–2.34]

UPLOG

A. concolor 1.618 [0.2–4] 1.325 [0.87–2.15] 0.738 [0.3–1.56] 0.922 [0–1.94]

C. decurrens 0.943 [0.1–1.94] 1.064 [0.71–1.7] 0 0.86 [0–8.03]

P. lambertiana 1.947 [0.5–4.27] 1.328 [0.84–2.35] 1.462 [0–4.87] 1.997 [0–7.85]

P. jeffreyi 1.683 [1.03–3.1] 0.937 [0.55–1.44] 3.889 [0–37.25] 0.98 [0–17.29]

POFLABMA

A. magnifica 1.09 [0.1–1.82] 0.935 [0.4–1.88] 0.723 [0.37–1.43] 0.791 [0.19–1.65]

P. concolor 0.649 [0.1–2.8] 0.421 [0–8.28] 1.127 [0–4.97] 0.346 [0–2.86]
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(Table 1). However, snowpack was not considered, and
A. magnifica dominates where most precipitation comes as
snow (Barbour et al. 1991). Firs also tolerate shading, which
was likely an advantage in the increasingly dense simulated
stands. Mean A. concolor BA declined across all scenarios in
5 out of 6 sites due to some combination of reduced growth
and increased mortality relative to recruitment, while tree-
level A. magnifica BA increased under climate change scenar-
ios more than the control in 3 out of 4 sites despite little

change in density, reflecting increased growth (Fig. 14,
Appendix 5).

The biggest winner in the climate change scenarios was
P. jeffreyi, which exhibited both BA and density increases,
though this species also increased at 2 out of 3 sites in the
control scenario. The increases in BA were driven primarily
by recruitment, leading to steady or declining mean tree BA
(Fig. 14, Appendix 5). The positive effects of warm dry con-
ditions on P. jeffreyi are consistent with previously observed

Fig. 1 Hindcast vs. historical basal area (left column) and density (right
column) across three plots (lowest elevation top, highest elevation
bottom). Solid lines - median over 20 replicates. Shading - 95% confi-
dence interval. Dots - observed basal area or density.ABCO, A. concolor;

ABMA, A. magnifica; CADE, C. decurrens; PICO, P. contorta; PILA,
P. lambertiana; PIPO, P. ponderosa; QUCH, Q. chrysolepis; QUKE,
Q. kelloggii

Page 7 of 24     75Annals of Forest Science (2021) 78: 75



adult survival and all growth responses (Table 1) as well as its
abundance on the dry eastern side of the Sierra Nevada and
broader elevational range in the south (Haller 1959). The re-
sponses of P. lambertiana were complex, showing increases
in density at all sites across climate scenarios but site-specific
differences in BA changes. Increases in BA and density at low
elevations were reduced with climate change at 1609–1806 m
but increased in 2 of the 3 warming scenarios at 2197.6 m. At
SJP and UPLOG, however, BA decreased by up to 28.9%,
and density increased by as much as 785%, indicating large
tree mortality across climate scenarios, which led to a steep
decline in mean tree basal area (Appendix 5). Increased winter
temperatures boost the growth of adult P. lambertiana, but
higher summer temperatures negatively affect its survival
(Table 1). Pinus lambertiana appears to have unusually high
shade-tolerance for a pine (Moran et al. 2019), which may
have contributed to its density increases.

Both C. decurrens and Q. kelloggii are predicted to de-
crease in density but increase in BA. This was driven by
highermortality and/or lower recruitment of small individuals,
leading to increased average tree size (Fig. 14, Appendix 5).
Warmer temperatures favor adult growth and survival in
Q. kelloggii and adult survival in C. decurrens but negatively
impact their seedlings (Table 1). Warmer conditions particu-
larly favor increases in total Quercus BA; for C. decurrens,
this was only consistently true at the highest site of occurrence
(Fig. 2). Both species increased in density during the twentieth
century (Dolanc et al. 2014a; McIntyre et al. 2015) and exhib-
ited lowmortality in the 2012–2016 “hot drought”(Fettig et al.
2019). Conversely, P. ponderosa usually decreased in BA but
increased in density; higher temperatures negatively impact
P. ponderosa survival but boost seedling growth (Table 1).
The increase inP. ponderosa density was surprising given that
this species is fairly shade-intolerant, but the sites containing it

Fig. 2 Average percent change in basal area (BA) under control and climate change scenarios 2006–2099, 10 replicates
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Fig. 3 Average percent change in tree density (# trees/ha) under control and climate change scenarios 2006–2099, 10 replicates

Fig. 4 Basal area projections, site
SJP. Left - P. jeffreyi (PIJE, top)
and A. concolor (ABCO, bottom)
in all 4 climate scenarios: control,
MIROC (“hot-dry”), CCSM4
(“moderate-warm”), and CNRM
(“warm-wet”). Right - All species
in control (top) and “hot-dry”
(bottom) scenarios. Solid lines -
median over 10 replicates.
Shading - 95% confidence inter-
val. ABCO, A. concolor; ABMA,
A. magnifica; CADE,
C. decurrens; PILA,
P. lambertiana; PIJE, P. jeffreyi;
PIPO, P. ponderosa
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had more gaps at the start of the simulation. In addition,
P. ponderosa seedlings benefit from modest levels of neigh-
boring adult basal area (Moran et al. 2019).

Increases in forest density and declines in large trees oc-
curred across California during the twentieth century
(McIntyre et al. 2015), but this trend was most pronounced in
private timberlands, and densification was greater on non-
wilderness National Forest lands than in National Parks
(Easterday et al. 2018). Both our USGS and newly established
plots have had no management interventions other than, in
some cases, prescribed fire, since at least the 1980s
(Appendix 2). Trajectories for more disturbed sites might differ,

so we would encourage those who are interested in National
Forest or private timberlands to apply the parameterized model
to their specific sites. Climate projections for various GCM-
RCP combinations can be downloaded from the California
Climate Commons (http://climate.calcommons.org/bcm).

A prior study modeling 30-year stand growth projected
lower stem volume growth under climate change, more so
for 20-year-old P. ponderosa plantations than for mature
second-growth stands (Battles et al. 2008), which is consistent
with some but not all of our results. However, the model in
question (CACTOS) was designed to estimate timber produc-
tion and has rather basic ingrowth and mortality functions.

Fig. 5 Basal area projections, site
SP. Left - Q. kelloggii (QUKE,
top) and P. ponderosa (PIPO,
bottom) in all 4 climate scenarios:
control, MIROC (“hot-dry”),
CCSM4 (“moderate-warm”), and
CNRM (“warm-wet”). Right - All
species in control (top) and “hot-
dry”. Solid lines - median over 10
replicates. Shading - 95% confi-
dence interval. ABCO,
A. concolor; CADE,
C. decurrens; PILA,
P. lambertiana; PIPO,
P. ponderosa; QUCH,
Q. chrysolepis; QUKE,
Q. kelloggii.

Fig. 6 Tree density projections,
site SP. Left - Q. kelloggii
(QUKE, top) and P. ponderosa
(PIPO, bottom) in all 4 climate
scenarios: Control, MIROC
(“hot-dry”), CCSM4 (“moderate-
warm”), and CNRM (“warm-
wet”). Right - All species in con-
trol (top) and “hot-dry” (bottom)
scenarios. Solid lines - median
over 10 replicates. Shading - 95%
confidence interval. ABCO, A.
concolor; CADE, C. decurrens;
PILA, P. lambertiana; PIPO,
P. ponderosa; QUCH,
Q. chrysolepis; QUKE,
Q. kelloggii

75    Page 10 of 24 Annals of Forest Science (2021) 78: 75



Some of the patterns we observed, such as the increased basal
area of Q. kelloggii under climate change (Fig. 5), appeared
after the first 30 years. An analysis based on tree growth in-
crement data was more consistent with our findings,
projecting increased growth in California forests under cli-
mate change both with and without CO2-induced increases
in water use efficiency (Charney et al. 2016). Prior
landscape-scale vegetation models also predict that climate
change favors the recruitment of more drought-tolerant spe-
cies such as oaks and gray pines (Lenihan et al. 2003; Liang
et al. 2017).

Our projections of increased overall forest density
would likely change if fire effects were included, but the
tendency toward density increases could make fuel man-
agement more challenging. Fire suppression since the
1880s has already led to increasing dominance of firs,
higher forest density, and increased risk of severe fires
(Beaty and Taylor 2007; Collins et al. 2011; Earles
et al. 2014). In the Sierra Nevada, forest area burned per
year increases with spring and summer temperatures
(Keeley and Syphard 2016). A recent simulation study
suggested that thinning and understory burning, while
having little effect under contemporary fire regimes, could
significantly decrease fire severity, increase carbon se-
questration stability, and maintain net ecosystem ex-
change under projected extreme fire weather (Krofcheck
et al. 2017). The Liang et al. model (2017) included
climate-associated increases in wildfire and predicted a
reduction in landscape C sequestration potential. The im-
pacts of both low and high intensity fire should be includ-
ed in future analyses if projections are to be used to guide
management. SORTIE-ND includes several fire behav-
iors; however, our aim here was to examine direct climate
effects.

Another source of mortality that can be influenced by cli-
mate is disease and pest outbreaks. In the 2012–2016 drought,
various species of bark beetles were the proximate cause of
death for many trees, particularly large pines (Fettig et al.
2019). The transmission and effects of fungal pathogens, such
as the blister rust that affects sugar and western white pines, on
the other hand, are favored by wet conditions (Tomback and
Achuff 2010). However, these effects are challenging to in-
clude in forest simulators, as host and herbivore/pathogen dy-
namics interact.

Early seedling survival proved to have a strong influence on
adult and sapling density. Parameterizing these dynamics can
be challenging, as very young seedlings are difficult to detect
and individually tag.We plan to address this in future iterations
of the model. Including soil properties might also be important
for local dynamics, as the model does not currently account for
rock outcrops, soil depth, or low nutrients that might limit tree
establishment and growth. However, such data are not always
recorded for long-term forest monitoring plots.

In interpreting both total and species-level responses, it
is important to remember that models are parameterized
based on observed variation. For the 26 parameterization
plots, maximum July temperatures increased 1–3 °C since
the 1970s, but changes in January minimums were smaller
and average precipitation did not change (Moran et al.
2019). Growth sensitivity to climate has been observed to
shift over time (Wilmking et al. 2020); this may also be
true of mortality and fecundity responses. The same is true
of emissions scenarios, which are subject to change due to
human policies and behaviors. Therefore, projections be-
yond 50–100 years should be considered indicative of di-
rection and magnitude of possible changes but not precise
predictions.

5 Conclusion

This is the first time an individual-based simulator has
been applied to California Mediterranean-climate forests.
It is encouraging that, despite increasing temperature-
driven aridity, the model does not project a collapse of tree
diversity or basal area due to climate change alone over the
next century. Indeed, while shifts in forest composition
favoring more heat- and drought-tolerant species are likely,
tree densities and basal areas are projected to increase in
the absence of disturbance, particularly above 2000-m el-
evation. However, these results should not be taken as rea-
son to be complacent, as increasing density plus the drying
effects of higher summer temperature could contribute to
increased risk of severe wildfire. Our results also suggest a
need to better understand tree reproduction, as changes in
tree density were quite sensitive to these processes and
seed production can be both directly and indirectly influ-
enced by climate (Clark et al. 2021).

Appendix 1. Model choice and setup

Why SORTIE-ND?

As cited in the main text, several forest models have been
parameterized for California forests. However, most are not
individual-level models, which is what was required for our
future plans of investigating the impact of individual-level
variation and heritability in climate responses on forest
dynamics under climate change. Liang et al. (2017) used the
landscape-scale model LANDIS II, in which species are rep-
resented by biomass in age cohorts. Lenihan et al. (2003) used
MAPSS-CENTURY 1, a dynamic vegetation model that sim-
ulates vegetation types in grid cells of > 900 m2 over very
large landscapes. CACTOS (Battles et al. 2008) does track
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individuals but was designed to capture short-term stand
growth and includes only simple mortality and in-growth
functions. Charney et al. (2016) used an entirely different
approach, correlating growth rings with climate, grouping
sites according to their climate responses, calculating vulner-
ability indexes based on projected climate change and local
growth responsiveness, and using this to forecast changes in
growth under different scenarios.

We considered various other individual-based modeling
approaches (Bugmann 2001), including FORCLIM
(Bugmann 1996), FORSKA (Prentice et al. 1993),
JABOWA (Kienast 1991), and PPA (Purves 2008).
However, FORCLIM uses cohorts to describe trees of the
same species and age rather than fully treating them as indi-
viduals; the source code was also difficult to find. FORSKA
does not track individuals under 1-cm DBH. The most recent
JABOWA code was not available without purchase, and the
model does not track seedlings and treats each canopy as
covering an entire patch. PPA is a SORTIE descendant that
includes physiological responses but does not track demogra-
phy on as fine a scale. SORTIE-ND offered high accessibility
with the ability to download old model behaviors and upload
novel behaviors for other users to access; a history of success
with applications to multiple forest types; and pre-existing
behaviors that were relatively simple to modify for the type
of forest demography data we had available. Moreover, the
Battle lab at UC Berkeley is developing SORTIE-ND-
compatible tree-shrub competition behaviors (personal com-
munication) that could be combined with our future studies.

Additional references
BugmannHKM (1996)A simplified forest model to study

species composition along climate gradients. Ecology. 77(7):
2055-2074.

Bugmann HKM (2001) A review of forest gap models.
Climatic Change. 51: 259-305. 10.1023/A:1012525626267

Kienast F (1991) Simulated effects of increasing atmo-
spheric CO2 and changing climate on the successional char-
acteristics of Alpine forest ecosystems. Landscape Ecology. 5:
225-238. 10.1007/BF00141437

Prentice IC, Sykes MT, Cramer W (1993) A simulation
model for the transient effects of climate change on forest
landscapes. Ecological Modelling. 65(1-2): 51-70. 10.1016/
0304-3800(93)90126-D

Purves DW, Lichstein JW, Strigul N, et al. (2008)
Predicting and understanding forest dynamics using a simple
tractable model. Proceedings of the National Academy of

Sciences. 105(44): 17018-17022. https://doi.org/10.1073/
pnas.0807754105

Climate sequences

As mentioned in the main text, we focused on January
minimum temperature, July maximum temperature, and
annual precipitation. These variables were chosen for con-
sistency with the prior published statistical analyses used
to parameterize the seedling growth and survival and
adult growth behaviors. While the absolute minimum/
maximum temperatures do not always occur in January
or July, these monthly minimums are closely correlated
with overall winter and summer minima and maxima.
Examples of changes in these values under different cli-
mate change scenarios are shown in the figure below.

Plot setup

Fig. 7 Landscape setup. Darker green square is the focal area, lighter
green area the buffer region. Each square is initiated with a replicate of
the real tree map
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Fig. 8 Projected future climate sequences from 2006 to 2099 for three
hindcast plots based onMIROC (“hot-dry”), CCSM (“moderate-warm”),
and CNRM (“warm-wet”) GCMs for RCP 8.5. Figure also includes the

“current” or control sequence drawn from the observed historical
sequence. July maximum temperature (°C), precipitation (mm), and
January minimum temperature (°C)
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Current SORTIE parameters

Allometry
ABCO, A. concolor; ABMA, A. magnifica; CADE,

C. decurrens; PICO, P. contorta; PIJE, P. jeffreyi; PIMO,
P. monticola; PIPO, P. ponderosa; QUCH, Q. chrysolepis;
QUKE, Q. kellogii

Adult diameter growth (behavior “ClimateNCIGrowth”)

DBH, diameter at breast height (cm); NCI, neighborhood
crowding index; JanMin, minimum January temperature;
Precip total annual precipitation; Crowding distance, distance
from target tree for which crowding effects are calculated

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Slope of DBH to D at 10 cm relationship 0.75

Intercept of DBH to D at 10 cm relationship 0

Maximum tree height, in meters 70 70 50 50 60 70 60 65 30 30

Slope of asymptotic height 0.011 0.010 0.010 0.019 0.016 0.009 0.016 0.016 0.011 0.011

Slope of height-D at 10 cm relationship 0.02

Slope of asymptotic crown radius 0.079 0.060 0.086 0.072 0.072 0.074 0.061 0.077 0.133 0.126

Crown radius exponent 1

Maximum crown radius (standard) (m) 10

Slope of asymptotic crown height 0.504 0.513 0.476 0.535 0.535 0.504 0.607 0.504 0.421 0.3937

Crown height exponent 1

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Intercept 2.68
E-01

4.00
E-01

1.77
E-01

−3.25
E-01

3.31
E-01

3.64
E-01

1.60
E-01

2.12
E-01

−3.37
E-01

4.05
E-01

DBH effect 1.34
E-03

NCI effect −2.27
E-04

JanMin effect 4.88
E-03

4.82
E-03

−3.40
E-03

−6.66
E-02

1.78
E-02

3.93
E-03

3.23
E-03

−2.62
E-02

−6.43
E-02

1.95
E-02

Precip effect 5.30
E-05

−7.62
E-05

6.85
E-05

4.21
E-05

−3.37
E-05

−5.39
E-05

1.28
E-04

6.77
E-06

3.71
E-04

−8.95
E-05

NCI max crowding distance (m) 50
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Seedling height growth
(behavior “ClimateSeedlingHeightGrowth”)

Adult mortality (behavior “ClimateNCIMortality”)

Seedling survival
(behavior “ClimateSeedlingHeightSurvival”)

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Intercept −1.01 −6.1 −1.53 −4.2 −4.2 −4.51 −2.91 −4.57 −2.5 −2.5
Size effect 0 (1st & 2nd yr) 6.04

Size effect 1 (< 10 cm) 6.04

Size effect 2 (10–50 cm) 2.71

Size effect 3 (50–140 cm) 2.95

July maximum temperature −0.158 0.020 −0.115 0.030 0.030 −0.012 −0.063 0.033 −0.129 −0.129
Current precipitation −2.77

E-04
−3.30
E-05

−1.47
E-04

−1.25
E-03

−1.25
E-03

−3.67
E-04

−8.86
E-04

−1.14
E-03

4.52
E-04

4.52
E-04

Basal area −0.033 0.041 −0.164 0.019 0.019 −0.080 −0.328 0.041 −0.017 −0.017

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Intercept −4.012
Diam −0.031
Diam2 1.65E-04

NCI 9.92E-05

JulMax −1.21 E-03 −1.35 E-02 −1.56 E-02 7.88
E-02

−2.48
E-02

2.82
E-02

−8.05
E-02

1.51
E-02

−3.27
E-02

−9.28
E-03

Precip −1.93
E-04

−1.21
E-04

−6.03
E-05

−2.75
E-03

3.67
E-04

−6.84
E-05

−6.12
E-04

−2.68
E-04

2.36
E-04

1.66
E-04

NCI Max crowding distance (m) 100

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Intercept 5.72 6.6 7.65 5.88 5.88 6.34 6.49 5.7 7.19 7.19

Size effect 0 (1st & 2nd yr) −17 −12 −20 −10 −7 −7 −10 −10 −10 −15
Size effect 1
(< 10cm)

−11 −8 −15 −7 −5 −5 −7 −7 −10 −10

Size effect 2 (10–50 cm) −0.83
Size effect 3 (50–140 cm) 0.27

July maximum temperature −0.072 −0.119 −0.126 −0.053 −0.053 −0.089 0.027 −0.072 −0.141 −0.141
Precipitation −2.20E -05 −3.20E -05 1.90E -05 5.10E -05 5.10E -05 2.00E -06 4.00E -05 1.10E -05 1.47E

-04
1.47E
-04

BA 0.01 −0.078 −0.109 0.044 0.044 −0.049 2.204 0.091 −0.17 −0.17
BA threshold 33.0 33.0 6.0 10.0 10.0 31.0 3.0 4.0 4.0 7.0
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Fecundity and dispersal
(behavior “MastingSpatialDisperse”)

Appendix 2. Adult mortality analysis

Trees in the 26 long-term census plots (Table 4) maintained by
the USGS in Yosemite and Sequoia National Parks were
checked annually for mortality.

ABCO ABMA CADE PICO PIJE PILA PIMO PIPO QUCH QUKE

Min DBH for reprod., (cm) 23 23 15 21 21 30 16 22 10 14

Masting CDF “a” 3

Masting CDF “b” −5
STR draw PDF ZIP

Canopy function 2Dt

Non-masting STR mean 5.71 5.71 4.78 1.66 1.66 1.66 1.66 1.66 0.27 0.27

Non-masting STR standard deviation 0.05 0.05 0.74 0.044 0.044 0.044 0.044 0.044 0.044 0.044

Lognormal canopy X0 1

TWODT canopy Xb 1

TWODT canopy X0 4167 4167 536 6447 6447 6447 6447 6447 1084 1084

Non-mast proportion participating (0–1) 1

Masting STR mean 56.23 56.23 45.45 6.39 6.39 6.39 6.39 6.39 1.02 1.02

Masting STR st dev 0.14 0.14 0.23 0.078 0.078 0.078 0.078 0.078 0.062 0.062

Masting Twodt Xb 1

Masting Twodt X0 4167 4167 536 6447 6447 6447 6447 6447 1084 1084

Mast proportion participating (0–1) 1

Masting group 1 2 3 4 5 6 7 8 9 10

Table. 4 Species listed in order of abundance; bold = > 40% of stems, italics = <10% of stems. Burn? = Time of any prescribed burns. ABCO,
A. concolor; ABMA, A. magnifica; CADE, C. decurrens; PICO, P. contorta; PIJE, P. jeffreyi; PIMO, P. monticola; PIPO, P. ponderosa; QUCH,
Q. chrysolepis; QUKE, Q. kellogii; YNP, Yosemite National Park; SNP, Sequoia National Park; Est, establishment year

Plot Park Elev (m) Size (ha) Est Burn? Species

YOHOPIPO YNP 1500 1 1991 2007 ABCO, CADE, PILA, PIPO, PSME, QUKE

BBBPIPO SNP 1609 1 1992 NA CADE, QUKE, ABCO, PILA, PIPO, QUCH

CCRPIPO SNP 1637 1.1 1991 NA ABCO, CADE, QUKE, PILA, PIPO

CRCRPIPO YNP 1637 1 1993 2009 ABCO, CADE, PILA, PIPO, QUKE

FFS7CONTROL SNP 1941 1 2001 NA ABCO, PILA, CADE

FFS6BURN SNP 2018 1 2001 2001 ABCO, PILA, QUKE, CADE, PIPO, PIJE

FFS5BURN SNP 2030 1 2001 2001 ABCO, CADE, PILA

SURIP SNP 2033 1.4 1982 NA ABCO, PILA, ABMA, QUKE, PIJE

SUABCO SNP 2035 0.9 1983 NA ABCO, CADE, PILA, ABMA

SUPILA SNP 2059 1.1 1983 NA ABCO, PILA, CADE, QUKE

FRPIJE SNP 2106 1 1983 NA PIJE, QUKE, ABCO, CADE, PILA, PIMO

FFS2BURN SNP 2128 1 2001 2001 ABCO, ABMA, PILA, CADE

LMCC SNP 2128 2 1982 NA ABCO, ABMA, SEGI, PILA

LOTHAR SNP 2167 1.1 1984 2004 ABCO, PILA, PIJE

LOGSEGI SNP 2170 2.5 1983 NA ABCO, ABMA, PILA, SEGI
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We used a Bernoulli process to model the mortality pro-
cess, and estimated the probability of dying with a linear mod-
el and a logit link function:

Y i;tBern pi;t
� �

logit pi;t
� � ¼ β0 þ β1DBHt þ β2DBH

2
t þ β3NCIi;t

þ β4Clim1t þ β5Clim2t þ ε

εN 0;σ2
� �

where Yi,t is the state of the tree i at time t ; pi,t is the associated
probability of dying; the β’s are a vector of parameters to esti-
mate; and ε is an error term. BothDBH andDBH2 are included
as predictors because both very small and very large trees tend
to exhibit elevated mortality. Competition is also known as an
important predictor of mortality because it decreases the access
to resources. We used a simple competition index:

NCIi;t ¼ ∑
j¼Ni

j¼1

Dj;t

disti; j

where Ni is the number of neighbors of tree i, Dj,t is the diam-
eter of neighbor j in year t, and disti,j is the distance between
trees i and j.

To estimate the parameters of the model, we used a
Bayesian calibration implemented in R (R core team 2017)
using Gibbs sampling. The vector of β’s is assigned a multi-
variate normal prior, and parameter σ2 an inverse gamma pri-
or. The model was fit for each species individually. To select
the climate variables included in the model, we ran the model
with pairs of variables: one related to temperature (JulMax or
JanMin) and one related to water availability (precipitation,
actual evapotranspiration (AET), or April snowpack). The
combination of variables used in the final model is selected
based on DIC values.

Table. 4 (continued)

UPTHAR SNP 2202 1 1984 2004 ABCO, PIJE, PILA
LOLOG SNP 2207 1.1 1985 NA ABCO, ABMA, PILA, SEGI, CADE
UPLOG SNP 2210 1 1985 NA ABCO, PILA, CADE, PIJE, QUKE
LOGPIJE SNP 2405 1 1985 NA ABCO, PIJE, ABMA, PILA
SFTRABMA YNP 2484 1 1992 NA ABMA
WTABMA SNP 2521 1 1993 NA ABMA, PIMO
POFLABMA YNP 2542 1 1994 NA ABMA, PICO
PGABMA SNP 2576 1 1992 NA ABMA
EMSALIX SNP 2838 1 1983 NA PIMO, PICO
EMSLOPE SNP 2950 1 1983 NA PIMO, PICO, PIJE, ABMA
EMRIDGE SNP 3097 1.1 1984 NA PIMO, PICO

Table. 5 Results of the mortality model. Median and 95 % interval for each parameter

Intercept DBH DBH2 NCI JulMax Precip
ABCO −4.012

[−4.253; −3.771]
−0.03078
[−0.0332; −0.02784]

0.0001647
[0.0001478; 0.0001827]

9.917e-05
[2.327e-05; 1.681e-04]

−0.001214
[−0.01667; 0.01118]

−1.9336e-4
[−3.2759e-4; −8.120e-5]

ABMA −0.01354
[−0.02961; −0.003055]

−1.2131e-4
[−2.3956e-4; −1.3236e-6]

CADE −0.01556
[−0.02568; −0.003911]

−6.0293e-5
[−3.2360e-4; 9.750e-5]

PICO 0.07876
[−0.1200; 0.1911]

−0.002746
[−0.004753; 0.0003273]

PIPO 0.01507
[−0.007357; 0.04129]

−0.0002683
[−0.0007824; 0.0002168]

PIMO −0.08049
[−0.1308; −0.01762]

−6.122e-4
[−1.142e-3; 8.165e-5]

PIJE −0.02483
[−0.06274; 0.002785]

3.668e-4
[3.594e-5; 7.837e-4]

PILA 0.02819
[0.01562; 0.04794]

−6.841e-5
[−3.057e-4; 1.2326e-4]

QUCH −0.03273
[−0.1087; 0.01795]

0.0002362
[−0.001091; 0.001405]

QUKE −0.009281
[−0.02254; 0.008511]

0.0001655
[−0.0002335; 0.0005373]
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Appendix 3. Fecundity and dispersal analyses

Years are considered masting years if the number of seedlings
is higher than the mean number of seedlings. The vector of
zeros and ones corresponding tomasting or non-masting years
is called mast thereafter.

We modeled dispersal using a 2Dt distribution function
(Clark et al., 1999a). The number of seedlings of genus g
found in quadrat i (area 5 × 5 m, or 25 m2) in year t is:

mg;i;t ¼ ∑
j¼1

Jg

25
1

πu 1þ d2i; j
u

� �2 z j;t

where di,j is the distance between the center of quadrat i and
the tree j; Jg is the number of trees of genus g in the plot; zj,t is
the number of seedlings produced by tree j in year t, and u is
the parameter of the 2Dt function that determines its shape.
We estimated u across all plots, but assumed that trees in one

plot do not disperse their seeds far enough to add seedlings in
the quadrats of another. The latent variable zj,t must also be
estimated.

For u, the parameter of the 2Dt function for dispersion, we
choose the same weak prior as in Clark et al., (1999b): a
Gamma distribution with parameters (1, 0.01). For pm and
pn, the first parameters of the zero-inflated Poisson (ZIP)
models for masting and non-masting years respectively; the
priors were uniform distributions between 0 and 1, as it is a
probability. For λm and λn the second parameters of the ZIP
for masting and non-masting years respectively, a Gamma
distribution with parameters (2, 0.01).

We used a Gibbs sampler to estimate the parameters and
the latent variables (masting years and fecundity for each tree
and each year), and a Metropolis-Hastings step at each step of
the Gibbs sampler to sample from full conditional distribution.
At each time step, the algorithm estimates first u; then pm and
pn ; then λm and λn; then zj,t, the true number of seedlings
produced by each tree. Results are presented in Table 6.

The results suggest that pines have the longest effective
dispersal distances (median u equivalent to mean dispersal dis-
tance of 126.12m), while cedars disperse the shortest distances
(median u equivalent to mean dispersal distance of 36.35 m),
and firs and oaks are intermediate. P in both masting and non-
masting years is bigger for pines and oaks, indicating a greater
variation between individuals in seed output than for firs and

cedars. λm is the largest for firs and cedars, which on average
produce over 45 new seedlings per tree in a mast year, while
the larger-seeded oaks and pines produce 1–6 new seedlings.
All species produce on average less than one seedling per tree
in a non-mast year, but λn is slightly larger for pines and oaks.

Fig. 9 Fecundity and dispersion model conceptual diagram. Data are tree
annual position and the annual number of seedlings in each quadrat. The
latent variables are not available and have to be estimated (exact number
of seedlings produced by each tree each year). The parameters have to be
estimated: the parameters of the masting model, the fecundity model, and
the dispersion model

Table. 6 Results of the reproduction and dispersal model. Median and 95% interval (in brackets and italics) for each parameter and each genus

Abies Pinus Quercus C. decurrens

U 4167
[4129; 4201]

6447
[6299; 6808]

1083
[930; 1307]

535.6
[518.8; 552.0]

Pm 0.2028
[0.1859; 0.2139]

0.7000
[0.6852; 0.7120]

0.7113
[0.6703; 0.7511]

0.5261
[0.5060; 0.5464]

λm 56.23
[55.99; 56.52]

6.380
[6.231; 6.533]

1.019
[0.8906; 1.1443]

45.42
[45.03; 45.90]

Pn 0.7926
[0.7853; 0.8000]

0.9198
[0.9138; 0.9251]

0.9184
[0.8866; 0.9436]

0.8907
[0.8827; 0.8989]

λn 0.2028
[0.1859; 0.2139]

0.7000
[0.6852; 0.7120]

0.7113
[0.6703; 0.7511]

0.5261
[0.5061; 0.5464]
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Appendix 4. Results with unadjusted seedling
survival

These figures depict model output and historical data before
the parameters in the seedling survival behavior were changed
for class 0 and/or 1. Each graph represents the model replicat-
ed 20 times. This runaway basal area and density depicted
below was caused by a high early seedling survival rate. To

mediate this, the seedling size class 0 parameter was initially
decreased at regular intervals (e.g., first made twice as nega-
tive, then 4× as negative) through a series of tests for each
USGS site (BBBPIPO, UPLOG, and POFLABMA). After
many tests, we concluded that “hand tuning” size class 1 pa-
rameter was also needed in order to achieve results similar to
the observed historical data.

Fig. 10 Comparison of modeled and historical basal area (left column)
and density (right column) across three plots: BBBPIPO (first row),
UPLOG (middle row), and POFLABMA (bottom row). The model was
replicated 20 times with the median graphed a solid line, and the shading
depicts a 95% confidence interval. Dots represent total basal area or

density of observed field data in particular year. ABCO, A. concolor;
ABMA, A. magnifica; CADE, C. decurrens; PICO, P. contorta; PIJE,
P. jeffreyi; PIMO, P. monticola; PIPO, P. ponderosa; QUCH,
Q. chrysolepis; QUKE, Q. kellogii
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Appendix 5. Additional graphs and tables
of initial conditions and changes in density
and basal area

Fig. 11 Initial conditions for the
seven sites. Initial tree density vs.
initial basal area, initial basal area
vs. elevation, and initial tree
density vs. elevation. In the latter
case, the relationship is not quite
significant (p = 0.14) but the
adjusted R2 = 0.25

Fig. 12 Percent change in tree
density averaged over 10 runs vs.
initial tree density (left) or eleva-
tion (right) for the control scenar-
io (top graphs) or climate change
scenarios (bottom). In the bottom
graphs, red, MIROC (“hot-dry”);
blue, CNRM (“warm-wet”); and
green, CCSM (“moderate-
warm”)
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Fig. 13 Percent change in the
basal area averaged over 10 runs
vs. initial basal area (left) or ele-
vation (right) for the control sce-
nario (top graphs) or climate
change scenarios (bottom). In the
bottom graphs, red, MIROC
(“hot-dry”); blue, CNRM
(“warm-wet”); and green, CCSM
(“moderate-warm”)

Table. 7 Percent change of basal area and density for control and future
climate sequences in 3 plots for total trees and by each species over 93
timesteps from 2006 to 2099, averaged over 10 runs. MIROC “hot-dry”,

CNRM “warm-wet”, CCSM “moderate-warm”. Plots are listed from lowest
to highest elevation. ABCO, A. concolor; ABMA, A. magnifica; CADE,
C. decurrens; PIJE, P. jeffreyi; PIPO, P. ponderosa; QUKE, Q. kellogii

Basal area % change Density % change

Control MIROC CNRM CCSM Control MIROC CNRM CCSM

Totals

BBBPIPO 13.4 13.24 20.25 16.27 −20.66 −22.63 −19.17 −20.57
SP 52.10 42.03 49.16 45.28 109.48 74.79 85.89 80.62

SJP 24.06 19.71 19.96 16.49 394 438.42 454.68 443.74

SJ 43.82 46.16 44.99 46.12 54.61 36.93 41.79 38.62

UPLOG 36.46 36.61 54.03 36.61 111.51 105.75 114.62 104.95

SJM 56.69 58.71 57.84 62.65 527.63 301.33 312.52 299.35

POFLABMA 47.88 50.95 43.63 48.82 81.88 71.8 99.95 97.85

ABCO

BBBPIPO 40.02 40.75 57.36 44.74 40.75 33.47 49.05 42.45

SP 55.08 24.41 35.75 30.45 149.87 108.52 131.14 114.03

SJP 16.69 −2.14 −0.15 −4.34 178.05 124.96 126.9 129.12

SJ 19.79 2.96 2.22 3.7 49.59 23.35 28.93 23.48

UPLOG 41.52 43.86 66 56.14 77.51 68.33 86.69 69.59

SJM 5.32 −13.42 −22.02 −16.9 82.67 52.16 42.84 51.64

ABMA

SJP 135.87 156.3 182.18 177.47 327.5 265 311.25 327.5

SJ 73.29 99.75 97.74 98.42 70.22 70.06 71.28 75.7

SJM 49.89 79.84 81.06 86.82 53.76 52.92 55.02 57.71

POFLABMA 46.52 51.4 42.48 47.12 49.96 51.26 49.35 50.57

CADE

BBBPIPO 27.17 21.99 34.82 24.58 −39.94 −39.22 −37.08 −39.48
SP 18.95 11.28 10.51 −25.01 −40 −42 −42 −46
SJP 38.52 16.87 8.27 18.67 −23.75 −20.94 −24.38 −20.63
UPLOG 35.87 74.52 81.21 64.87 −47.14 −40 −37.86 −36.43
PILA

BBBPIPO 63.17 28.15 42.13 45.59 17.69 8 15.08 14.62
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Fig. 14 Average basal area (BA) per tree in m2 initially (white) and at end of the century in control (black) and climate change (gray) scenarios overall
and by species. A basal area of 0.1 m2 corresponds to a DBH of 35.6 cm, a basal area of 0.3 m2 to a DBH of 61.8 cm

Table. 7 (continued)

SP 90.44 84.42 88.04 77.09 340 279.41 321.67 294.26
SJP −29.8 −11.36 −27.61 −21.76 785.71 567.14 620 625.71
SJ 213.11 176.25 241.47 257 55.71 45.71 95.71 94.29
UPLOG -4.61 −28.93 −25.58 −10.39 349.29 275 266.79 323.57
PIPO
BBBPIPO −28.41 −44.01 −30.71 −20.42 177.74 129.03 171.61 164.52
SP 52.92 −7.55 −12.33 −1.76 107.15 32.36 36.02 45.77
SJP 5.75 20.04 −23.31 −14.85 231.43 180 197.14 168.57
PIJE
SJP 77.98 172.06 189.44 171.475 2430.67 3366.33 3494.67 3362
SJ −15.72 161.7 162.25 91.75 −57.5 132.5 135 57.5
UPLOG 241.81 340.49 223.03 228.47 349.29 275 266.79 323.57
QUKE
BBBPIPO −2.33 23.16 7.65 8.53 −35.94 −34.53 −39.19 −35.76
SP 12.4 152.75 172.17 153.37 −35.6 −18.4 −19.5 −16.1
UPLOG −20.29 396.06 316.11 320.85 −85 −35 −40 -40
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