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Abstract
Key message Three-layered back-propagation (BP) neural networks with architecture 4–10-1 (four neurons in the input 
layer, ten neurons in the hidden layer and one neuron in the output layer) performed better than MLR (multivariate 
linear regression) in modelling complex nonlinear relationships between sap flow and driving factors. The optimum BP 
model was achieved with an input combination of air temperature, relative humidity, average net radiation, and a pheno-
logical index. The performance of BP models indicated a small improvement with the inclusion of a phenological index.
Aims This study focused on the applicability of back-propagation (BP) neural networks in simulating sap flow (SF) using 
meteorological factors and a phenological index (PI) for Liquidambar formosana, a deciduous broad-leaf tree species in 
subtropical China, and thus providing a useful and promising alternative to traditional methods for transpiration prediction.
Methods Three-layered BP models with an architecture 4–10-1 (four neurons in the input layer, ten neurons in the hidden 
layer and one neuron in the output layer) were trained and tested using the Levenberg–Marquardt (LM) algorithm based on 
in situ observations of SF and concurrent microclimate at the Qianyanzhou Ecological Station, Jiangxi Province, Southeast 
China. The model performance was verified with testing data not used in model development.
Results The BP models with eight input combinations proved a satisfactory fit: the determination coefficients (R2) and fitting 
accuracies (Acc) (about 0.8 and 70%) were significantly higher than those of the multivariate linear regression (MLR) (about 
0.5 and 50%), indicating their advantage in solving complex nonlinear relationships involved in transpiration. In addition, 
the BP models showed a bit better performance by adding PI to the input family. The best BP model was achieved taking 
air temperature (Ta), relative humidity (RH), average net radiation (ANR), and PI as the input and sap flux density (vs) as the 
output, with maximum R2 and Acc as high as 0.95 and 90%, respectively.
Conclusion The BP models with input combination of Ta, RH, ANR, and PI mirrored very well measured daily variations 
in vs. The results could be used to fine-tune estimations of sap flow by Liquidambar formosana, and thus shed light on the 
eco-hydrological process related to transpiration for deciduous broad-leaf trees.

Keywords Liquidambar formosana · Sap flux density · Meteorological factors · Back-propagation neural network · 
Phenological index

1 Introduction

Transpiration contributes a lot to the hydrologic cycle in forest 
ecosystems (Deutscher et al. 2016; Fatichi and Pappas 2017; 
Wilson et al. 2001) and reflects the photosynthetic activity 
of plants to the changing climatic conditions (Evaristo et al. 
2016; Grossiord et al. 2017). Thus, the study of transpiration 
and its environmental sensitivity is of importance to under-
stand water cycling and tree physiology (Bauerle et al. 2002; 
Konings et al. 2017). In the past decades, a few techniques 
have been developed to measure transpiration, including gas 
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exchange systems (e.g., Monje et al. 2000; Dragoni et al. 
2005), micrometeorological techniques (e.g., Aouade et al. 
2016; Saugier et al. 1997), and chemical tracers (e.g., Calder 
et al. 1986). However, there are major drawbacks associated 
with these techniques (González-Altozano et al. 2008; Kalma 
et al. 1998). In addition, numerous modelling approaches have 
also been applied to predict transpiration with relevant driving 
parameters, such as semi-empirical models (Monteith 1997; 
Paudel et al. 2015) and empirical models (Buckley et al. 2012; 
Whitley et al. 2013). Unfortunately, these models failed to 
yield satisfactory results because most of them required 
extensive data inputs that are not included in conventional 
observations (Fernandes et al. 2015; Gharun et al. 2015) or 
needed special parameterization unavailable for different spe-
cies (Buckley et al. 2012). Furthermore, these methods often 
underestimate nighttime transpiration, an essential part of 
plant water consumption (Cavender-Bares et al. 2007; Moore 
et al. 2008).

The sap flow (SF) method using heat as a tracer has been 
routinely used for continuous measurements of plant water 
consumption with high-precision and mild impact across 
spatiotemporal scales (Dragoni et al. 2005; Kallarackal et al. 
2013). Currently, several advanced methods are available to 
measure sap flow (Vandegehuchte and Steppe 2013). None-
theless, efforts remain in optimizing the existing methods 
and developing new approaches (Vandegehuchte et al. 2015; 
Windt and Blümler 2015). The SF method also allowed 
researchers to make inferences about water status (Venturin 
et al. 2020), plant water relations to the environment (Miner 
et al. 2017; Paudel et al. 2015) and the impact of changing 
climate (Berdanier and Clark 2018) and forest management 
practices (Fernandes et al. 2015; Han et al. 2019) in for-
ested landscapes. It is well acknowledged that sap flow is 
controlled not only by meteorological parameters such as 
temperature (Ta), vapor pressure deficit (VPD) (Hayat et al. 
2020; Juhász et al. 2013; Pfautsch et al. 2010), and soil water 
content (Nadal-Sala et al. 2017) but also by physiological 
parameters such as LAI (Liu et al. 2009; Navarro et al. 
2018; Tu et al. 2019). Obvious differences exist between 
the response of SF and its sensitivity to meteorological fac-
tors under different soil water conditions (Chen et al. 2014; 
Hayat et al. 2020). The interactions between those param-
eters are complex, and many of them are typically highly 
correlated (Asbjornsen et al. 2011). Many traditional models 
combining environmental factors with physiological factors 
have been used to acquire more-accurate estimates of SF 
(Chen et al. 2014; Liu et al. 2017; Tie et al. 2017). Nev-
ertheless, these models worked unsatisfactorily with poor 
accuracy because of their basic assumption on the normal 
distributions of the data set and linear relationships between 
input and output. Hence, a novel technique capable of map-
ping the complex non-linear process involved in transpira-
tion is necessary.

Due to its advantages of self-organization, self-learning, 
and self-adapting (Faris et al. 2019), the artificial neural net-
work (ANN) was proposed as an efficient and useful model-
ling approach to identify the implicit input–output relation-
ships to an arbitrary degree of accuracy without specifying 
the underlying complex nature in an explicit mathematical 
form (Adeloye et al. 2012; Nourani et al. 2011). In the past 
decades, ANN has been intensively applied for resolving 
complex problems in the fields of forest and agriculture 
hydrology, e.g., evapotranspiration (Abrishami et al. 2019), 
trunk sap flow (Gharun et al. 2015), and transpiration (Gar-
cia-Santos 2011; Xu et al. 2017). The back-propagation (BP) 
neural network is one of the most commonly used types, 
owing to its ability to approach a discretionary nonlinear 
function with good fitting results without any restrictive 
assumptions about the functional form of the underlying pro-
cess (Humphrey et al. 2016; Nourani and Kalantari 2010). 
Many researchers have found better performance of BP neu-
ral networks over traditional models in modelling sap flow 
or transpiration (Fernandes et al. 2015; Gharun et al. 2015; 
Xu et al. 2017), but our understanding of time-lag effect or 
phenological influence on neural networks is still limited in 
various species (Chen et al. 2020; Tu et al. 2019).

Based on the in situ observations of SF and microcli-
mate on a Liquidambar formosana plantation from April to 
December in 2014, a three-layered BP neural network with 
the architecture 4–10-1 was constructed to describe the com-
plex nonlinear relationships between SF, meteorological fac-
tors, and phenological index (PI). Specifically, we intended 
to (1) detect the dominant driving factors controlling sap 
flow with a single-variable analysis method, (2) identify the 
advantages of BP models in mapping the complex non-linear 
correlations between SF and its driving factors using mul-
tivariate linear regression (MLR) as a benchmark, and (3) 
evaluate the performance of BP models retrieved by various 
input combinations and determine the most relevant inputs 
affecting SF. This study examines the utility of BP meth-
ods in modelling SF of Liquidambar formosana with the 
minimum input variables of climatic data and physiological 
factor, which is complementary to our previous paper that 
reported results for Pinus massoniana (Tu et al. 2019). The 
results will also be helpful for proving the fact that the meth-
odology works for both a gymnosperm and an angiosperm.

2  Materials and methods

2.1  Study site

This research was conducted in the Qianyanzhou Ecological 
Station (115° 04′ 13″ E, 26° 44′ 48″ N; 102 m a.s.l.), affili-
ated with the Institute of Geographic Sciences and Natural 
Resources Research, Chinese Academy of Science, located 
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in Taihe County of Jiangxi Province, Southeast China. It is 
characteristic of a typical subtropical monsoon climate with 
high temperatures and abundant precipitation. The annual 
accumulative sunshine hours is 1360 h with gross radia-
tion intensity reaching 4349 MJ·m−2. The annual average 
temperature is 17.8 °C with the maximum monthly aver-
age temperature being 28.8 °C in July and the minimum of 
6.4 °C in January. Although the annual mean rainfall reaches 
1500 mm, more than 50% is concentrated between April and 
June with less in the summertime, and is unequally distrib-
uted among the four seasons of a year. The dominant soil is a 
red Oxisol according to FAO classification, developed from 
slate and shale (Wang et al. 2008). Sample plot investigation 
was conducted on a mixed broadleaf-conifer forest (Liquid-
ambar formosana, Cunninghamia lanceolate, Pinus mas-
soniana, Schima superba) in 2014. The stand density was 
2280 stems·ha−1 with the average DBH and height of Liquid-
ambar formosana being 20.5 cm and 15.7 m, respectively. 
The canopy cover is as high as 0.9 in the sample plots, with 
a few shrubs of Symplocos sumunti and herbs of Dalbergia 
hupeana sparsely distributed in the understorey.

2.2  Measurement of sap flow and environmental 
variables

Sap flux density (vs,  cm3·cm−2·s−1) was continuously meas-
ured on nine sample trees (three in each plot) using thermal 
dissipation probes (TDP-30, Dynamax Inc., Houston, TX, 
USA) from April 2014 to December 2014. The DBH of 
sample trees ranged between 20.6 and 21.8 cm, averaging 
around 21.2 cm. A probe set consists of two parts: the heat-
ing needle installed above using a resistance wire to provide 
constant heating; the reference needle installed below with-
out heating. The installation of the probes followed proce-
dures recommended by the manufacturer. All probes were 
mounted on the northern side of the trunk at 1.5 m height 
above the ground and wrapped with aluminium-foil paper to 
avoid physical trauma and thermal effects from solar radia-
tion. The data were recorded at 60 s intervals and stored as 
30 min averages on a data logger (DT-50, Thermo Fisher 
Scientific Inc., Waltham, USA). Sap flux density (vs) was 
calculated based on the empirical relationship established 
by Granier (1987)as Eq. 1:

where ΔT is the temperature difference between the ther-
mal needle and the reference needle, ΔTmax is the maximum 
ΔT recorded during the period of nearly no sap flow, often 
occurring at predawn (Rabbel et al. 2016).

(1)v = 0.0119 ×

(

ΔT
max

− ΔT

ΔT

)1.231

Air temperature (Ta), relative humidity (RH), wind 
velocity (Ws), and average net radiation (ANR) were syn-
chronously monitored by the routine meteorological instru-
ments (Model HMP 45C, Vaisala Inc., Finland) at 15 m on 
the flux tower, which was about 200 m away from the study 
plot. Soil moisture (θ) at a depth of 10 cm was obtained by 
a soil moisture sensor (Model CS616, Campbell Scientific 
Inc., USA). All data were recorded at 60 s intervals and 
stored as 30 min averages on a data logger (Model CR1000, 
Campbell Scientific Inc., USA). The dynamic responses of 
SF to meteorological factors were assessed using a cross-
correlation analysis. A range of time-lags were introduced 
for each pair of time series, and the corresponding range of 
correlation coefficient (r) was obtained by using the cross-
correlation function (Oguntunde et al. 2004). The lag that 
corresponds to maximum r is retained as the time-lag for 
that pair. In this study, sap flow lagged behind ANR by about 
60 min, whereas no time shift was detected between SF and 
Ta and RH. All data sets have been deposited into the Dryad 
repository (Tu et al. 2021).

2.3  Data pre‑processing

Data pre-processing can make ANN model training more 
efficient, including input variables selection, outlier exclu-
sion, data division, and normalization. A single-variable 
analysis was performed on related driving factors affecting 
sap flow (i.e., Ta, RH, Ws, ANR, and θ). Additionally, the 
phenological index (PI), a kind of time factor with a spe-
cific value assigned for any sampling time, was introduced 
to characterize the phenological influence on SF (Tu et al. 
2019). Following the method suggested by Li et al. (2006), 
we obtained a total of 10,800 groups of data set by eliminat-
ing abnormal ones. The total data set were randomly split 
into two groups with the coin flipping method. All the origi-
nal data set were normalized by a hyperbolic tangent func-
tion and transformed into the range of [0,1]. More details 
about input variables selection, outlier exclusion, data divi-
sion, and normalization can be found in the previous study 
(Tu et al. 2019).

2.4  Backpropagation neural network modelling

A three-layer feed-forward back-propagation (BP) neural 
network was used to simulate sap flux density (vs) using a 
commercial software package (MATLAB, The MathWorks 
Inc., Natwick, MA, 2014). Meteorological parameters and 
the PI were selected as the input variables, and vs as the out-
put. The training process repeated until a minimum accept-
able error (0.0001) was achieved between the measured and 
target output values (Eq. 2). After about 2000 iterations, the 
optimum BP architecture 4–10-1 (four neurons in the input 
layer, ten neurons in the hidden layer and one neuron in the 
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output layer) was identified through comparisons of differ-
ent network structures by cross-validation and adjusting the 
network parameters. More details about BP neural network 
modelling can be found in the earlier paper (Tu et al. 2019).

where ti is the target output for the ith pattern, ai is the meas-
ured output for the ith pattern.

2.5  Model evaluation

The two statistical parameters, coefficients of determination 
(R2) and fitting accuracy (Acc), were used to assess the per-
formance of BP neural network and MLR by comparing the 
measured and target values of vs (Tu et al. 2019).

3  Results

3.1  Multiple linear regression analysis

According to the single-variable analysis between input 
and output variables, sap flux density (vs) correlated posi-
tively with air temperature (Ta) and average net radiation 
(ANR) (p < 0.001), but negatively with relative humidity 
(RH) (p < 0.001), with correlation coefficients of 0.438, 
0.619, and − 0.323, respectively (Table 1). The sequence 
for meteorological factors affecting the accuracy of the 
model was ANR > Ta > RH, indicating that the contribu-
tion of solar radiation to SF was greater than Ta and RH. 
However, other variables, such as wind speed (Ws) and soil 
moisture (θ), did not significantly contribute to explain-
ing SF and indicated no significant correlations (p > 0.05) 
with SF.

To identify the superiority of BP methods over tradi-
tional statistical models in mapping complex nonlinear 
input–output relationships, multiple linear regression 
(MLR) equations were developed between vs and the 
above three meteorological factors (with and without 
time-lag considered), with the confidence level of 95% 
to select and reduce dependent variables. The optimum 

(2)E =
1

2

∑

p

(

ti − ai
)2

MLR was achieved using the training data set (consider-
ing a time-lag effect), with the determination coefficient 
(R2) and fitting accuracy (Acc) of 0.52 and 50%, respec-
tively (Eq. 3). The value of R2 indicated that 52% of the 
daily variation in SF could be explained by the combina-
tion of ANR and RH. Then, the optimum MLR was also 
validated using testing data set, with an R2 and Acc of 
0.51 and 50%, respectively. To sum up, the fitting perfor-
mance derived from MLR was relatively poor, indicating 
that the complex relationships between SF and its driving 
factors are not well explained by the statistical regression 
analysis method.

3.2  Dependence of BP models on different input 
variables

On the basis of the training data set, eight BP models with 
the architecture of 4–10-1 were formulated to simulate SF 
by varying input variables, so as to determine the opti-
mum BP model. The eight groups of input variables were 
selected as:

◦ Scheme 1: Ta and RH;
◦ Scheme 2: Ta and ANR;
◦ Scheme 3: RH and ANR;
◦ Scheme 4: Ta, RH, and ANR;
◦ Scheme 5: Ta, ANR, RH, and Ws;
◦ Scheme 6: Ta, RH, ANR, and PI;
◦ Scheme  7: Ta, RH, and ANR (considering time-lag 

effect);
◦ Scheme 8: Ta, RH, ANR (considering time-lag effect), 

and PI

In order to testify the feasibility of BP models in map-
ping the nonlinear relationships between SF and its driving 
factors, we randomly picked out 100 groups from the train-
ing data set to depict the line plots of the measured and 
simulated vs by the eight input combinations (Fig. 1a–h 
denotes the measured and simulated vs by BP models on 
scheme 1 ~ 8, respectively.)

As shown in Fig. 1, the simulated vs by BP models 
matched well with the measured values, indicating 
that the BP models could satisfactorily describe the 
relationships between the input and output parameters 
during the training stage. Besides, the generalization 
ability of BP models was also validated using the test-
ing data set with cross-validation analysis. It can be 
seen that all data points were well aggregated along 
the ideal unity-slope line (Fig. 2). Taken together, the 

(3)
vs = 0.001 − 3.474 × 10

−5RH + 4.774 × 10
−6ANR

(

R2 = 0.52 p < 0.001 n = 3000
)

Table 1  Single-variable analysis between SF and its relevant vari-
ables

** Indicates significant correlation at p < 0.001. vs sap flow density 
 (cm3·cm−2·s−1), Ta air temperature (°C), Ws wind speed (m·s−1), ANR 
average net radiation (w·m−2), RH relative humidity, θ soil moisture 
 (cm3·cm−3)

Ta Ws ANR RH θ

vs 0.438** 0.085 0.619** -0.323** 0.018
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BP models produced better fittings of SF compared 
to the MLR model, as ref lected by the higher R2 and 
Acc values of the eight models, f luctuating within 
the range of 0.80 ~ 0.95 and 72 ~ 90%, respectively 
(Fig. 2, Table 2).

However, it is noteworthy to mention that various results 
could come out in multiple trial experiments owing to ran-
dom initialization of the weight vectors of neural networks, 
thus resulting in failure to obtain the optimum BP model. 
Therefore, we carried out 100 repeated trial experiments 
to test the sensitivity of BP models to different input vari-
ables (Fig. 3). Firstly, the minimum R2 and Acc of 0.80 and 
70% occurred with scheme 3 without Ta (Fig. 2c, Table 2), 
suggesting that the variable Ta was a crucial variable for SF 
simulation. Secondly, the R2 and Acc were over 0.9 and 80% 
(Fig. 2d, e, f, g, h, Table 2) with Ta, RH, and ANR simultane-
ously included.

This supported the conclusions from the earlier multiple 
linear regression analysis that ANR, Ta, and RH were the 
dominant driving factors controlling SF in our study. The R2 
and Acc showed no significant increase when Ws was added 
to the BP models (Figs. 2e and 3, and Table 2), indicating 
that Ws was not a crucial variable controlling SF. Thirdly, the 
inclusion of phenological index (PI) related to physiological 
factors slightly improved the model performances (Figs. 2f 
and 3, Table 2).

Conversely, the inclusion of a time-lag effect did not sig-
nificantly improve the performance of BP models (Figs. 2e 
and 3, Table 1), although there existed an approximately 
60 min delay between SF and and ANR. Therefore, the opti-
mum BP model was achieved by taking Ta, RH, ANR, and PI 
as the input variables, with a maximum R2 and Acc of 0.95 
and 90%, respectively.

4  Discussion

4.1  Dependence of sap flow on meteorological 
factors

Previous studies have indicated that VPD, solar radiation, 
and Ta are the most important environmental factors con-
trolling sap flow, especially VPD and solar radiation (e.g., 
Chang et al. 2014; Chen et al. 2014; Liu et al. 2012; Tie 
et al. 2017). In our study, sap flow was tightly controlled 
by ANR, RH, and Ta. The correlation of sap flow to ANR 
was stronger than that with RH and Ta, and it explained 
62% of the variation in SF (Table 1). This finding was 
consistent with the studies conducted in various species 
including Populus davidiana, Albizia kalkora, and Acacia 
auriculiformis (Tie et al. 2017; Wang et al. 2017). How-
ever, VPD contributed more to the variations in SF than 
solar radiation for Pinus massoniana in our eariler paper 

Fig. 1  Comparison of the meas-
ured and simulated sap flux den-
sity by BP neural networks with 
eight different combinations of 
input variables. (Each compari-
son uses a different set of meas-
urement data. The dashed lines 
denote the measured values and 
the solid lines denote the target 
outputs)
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Fig. 2  Scatter plot between 
measured and simulated values 
of sap flux density using BP 
models based on eight combina-
tions of input variables during 
the testing stage

Table 2  Fitting accuracy statistics of training and testing datasets from eight schemes

Data type Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7 Scheme 8

Max
Acc

Training 0.8165 0.8173 0.7946 0.8877 0.8948 0.8983 0.9019 0.9032
Testing 0.7954 0.7830 0.7443 0.8636 0.8680 0.8657 0.8929 0.8956

Min
Acc

Training 0.7679 0.7808 0.7488 0.8596 0.8533 0.8752 0.8752 0.8644
Testing 0.7470 0.7321 0.7038 0.8041 0.8025 0.8673 0.8370 0.8289

Med
Acc

Training 0.776 0.8034 0.7698 0.8799 0.8817 0.8886 0.8731 0.8894
Testing 0.7633 0.7810 0.7218 0.8655 0.8306 0.8667 0.8278 0.8321

Ave
Acc

Training 0.7618 0.8027 0.7687 0.8765 0.8794 0.8830 0.8788 0.8843
Testing 0.7650 0.7880 0.7209 0.8519 0.8251 0.8417 0.8231 0.8299
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(Tu et al. 2019). This may be related to the differences in 
stomatal resistance. Moreover, the influences of environ-
mental factors on SF vary with tree species, growth status, 
hydro-climatic characteristics, timescales, etc. (Chen et al. 
2014; Du et al. 2011; Liu et al. 2012). Over short time-
scales (e.g., diurnally), solar radiation and VPD have been 
shown to exert more control on transpiration (Zha et al. 
2017). However, over longer timescales (e.g., seasonally), 
available soil water and leaf phenology are more important 
(Hayat et al. 2020).

Many studies conducted in arid and semi-arid regions have 
concluded positive correlations between SF and soil moisture 
(Chang et al. 2014; Chen et al. 2014; Nadal-Sala et al. 2017; 
Telander et al. 2015), usually fitted by logistic regression 
(Chang et al. 2014) or exponential regression (Wu et al. 2018). 
Our result showed that there was poor correlation between SF 
and soil water content (θ), suggesting that the forest might not 
have been under any soil water stress during the experimental 
periods. This is consistent with the result from Q. acutissima 
and C. lanceolata in the Yangtze River Delta Region of China 
(Liu et al. 2017). The reason may be to do with the high soil 
moisture content derived from high annual rainfall (approxi-
mately 1500 mm). Furthermore, the relationship between SF 
and θ is complex (Brito et al. 2015). Plants adjust their structural 
or physiological characteristics to maintain the integrity of the 
hydraulic system under water stress (Bréda et al. 2006); thus, soil 
moisture reduction gave rise to a more significant effect on SF 
for shallow-rooted or less drought-sensitive species (McCarthy 
and Pataki, 2010; Zapater et al. 2011). However, others failed 
to confirm the restrictions of soil moisture on SF, particularly 
for deep root plants capable of accessing groundwater (Liu et al. 

2017; Prieto et al. 2010). Therefore, a more clear and in-depth 
analysis of the relationship between SF and θ is needed to elu-
cidate the effect of soil moisture on tree transpiration (Ghimire 
et al. 2014).

Wind speed (Ws) has been recognized as an important 
factor influencing tree transpiration (McNaughton and Jarvis 
1983), which determines leaf boundary layer conductance 
and therefore modifies the rate of transport of water away 
from leaves (Kume et al. 2015). Significant positive corre-
lations have been found between SF and Ws in Salix psam-
mophila and Larix principis-rupprechtii (Huang et al. 2015; 
Han et al. 2019). However, Dixon and Grace (1984) pre-
dicted a negative response of transpiration to increasing Ws. 
A wind tunnel experiment on five tree species also suggested 
that the aerodynamic controls of tree transpiration by Ws 
probably results from differences in stomatal conductance 
rather than leaf type (Kume et al. 2015). In our study, no 
significant correlation was found between SF and Ws. The 
reason may be that a smaller stomatal conductance (gs) rela-
tive to aerodynamic conductance (ga) controlled the water 
movement between the leaf surface and atmosphere, leading 
to insignificant aerodynamic control on transpiration (Kume 
et al. 2015).

4.2  Dependence of sap flow on physiological 
factors

Significant difference can occur in sap flow dynamics even 
under similar weather conditions, probably attributable to 
growth differences at different phenological stages (Chirino et al. 
2011; Fernandes et al. 2015; Tu et al. 2019). Phenology is a key 

Fig. 3  Statistical analysis of 
fitting accuracies from eight BP 
neural networks. (I: denotes the 
Acc of the training datasets, and 
II: denotes the Acc of the testing 
datasets)
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indicator describing the timing of certain periodical develop-
ment stages of species throughout the year (Hudson 2010) and 
remains one of the most challenging processes to parameterize 
in ecosystem process models (Gonsamo et al. 2013). Therefore, 
it is important to consider phenology in modelling sap flow. As a 
vital index related to plant phenology, LAI is often used together 
with environmental factors for optimizing SF simulation (Obrist 
et al. 2003; Chang et al. 2014; Tie et al. 2017). However, LAI is 
only available at coarse spatial and temporal resolution (Bréda 
and Granier 1996; Garrity et al. 2011; Hayat et al. 2020). Thus, 
phenological index (PI) was used here to represent the impact of 
phenology on SF. Because climate data are well represented in 
the modelling, we believe that such an index can quantitatively 
capture the phenological influence when modelling SF. Based 
on the results above, we also found that the performance of BP 
models was only slightly improved by including PI, which is 
different from our previous result on Pinus massoniana (Tu et al. 
2019), which showed a larger improvement. This low sensitiv-
ity of sap flow to phenology may be associated with the leaf 
emergence of Liquidambar formosana.

4.3  Time‑lag between SF and meteorological 
factors

Time-lag between SF and meteorological factors has long been 
recognized in various ecosystems, species or geographical 
regions (Hayat et al. 2020; Zhang et al. 2019). The magnitude 
of the time-lag is dependent on biotic and abiotic factors and var-
ies among species and seasons (Kume et al. 2008; Zhang et al. 
2019). Among them, solar radiation and soil moisture were the 
prominent factors influencing diurnal time-lag loops (O’Grady 
et al. 2008; Tie et al. 2017). Under low radiation and soil water 
condition, the time-lag was significantly reduced (Hayat et al. 
2020; Tie et al. 2017). Generally, sap flow is delayed relative to 
solar radiation but changes ahead of Ta and RH changes (Wang 
et al. 2017; Zhang et al. 2019). However, sap flow of Salix psam-
mophila changes ahead of solar radiation (Hayat et al. 2020). 
Moreover, no time-lag was found between SF and RH for Larix 
gmelinii in the northeastern of China (Wang et al. 2011). In our 
study, sap flow only lagged behind ANR by 60 min, whereas 
no evident time-lag existed between SF and Ta and RH, which 
is not consistent with other studies (Hayat et al. 2020; Zhang 
et al. 2019). The performance of BP neural networks showed 
no significant improvement with time-lag included, which is not 
consistent with a previous study on the coniferous species Pinus 
massoniana (Tu et al. 2019).

5  Conclusions

Facing the complex hydrological and physiological pro-
cess related to transpiration, this paper assessed the feasi-
bility of BP neural networks in simulating the non-linear 

relationships between SF of Liquidambar formosana and 
its driving factors. The BP models outperformed the con-
ventional method of MLR in simulating SF with high fit-
ting accuracy and generalization ability, slightly improved 
by including a phenological index (PI). Therefore, the best 
BP neural network structure was achieved according to coef-
ficients of determination (R2) and fitting accuracy (Acc), tak-
ing Ta, RH, ANR, and PI as the input variables and vs as the 
output. From this perspective, the BP method was proved to 
be a useful and promising alternative to the traditional meth-
ods for assessing tree physiological response using com-
binations of climatic data and physiological factor without 
knowing the complex mechanism involved in transpiration. 
Based on the results obtained in previous paper with pine 
and the ones obtained in this paper with Liquidambar, we 
concluded that the BP neural network methodology works 
in simulating SF for both a gymnosperm and an angiosperm.
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