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Abstract
• Key message  The aim of the study was to distinguish orchards from other lands with forest vegetation based on the 
data from airborne laser scanning. The methods based on granulometry provided better results than the pattern analy-
sis. The analysis based on the Forest Data Bank/Cadastre polygons provided better results than the analysis based on 
the segmentation polygons. Classification of orchards and other areas with forest vegetation is important in the context 
of reporting forest area to international organizations, forest management, and mitigating effects of climate change.
• Context  Agricultural lands with forest vegetation, e.g., orchards, do not constitute forests according to the forest defini‑
tion formulated by the national and international definitions, but contrary to the one formulated in the Kyoto Protocol. It is 
a reason for the inconsistency in the forest area reported by individual countries.
• Aims  The aim of the study was to distinguish orchards from other lands with forest vegetation based on the data from 
airborne laser scanning.
• Methods  The study analyzed the usefulness of various laser scanning products and the various features of pattern and 
granulometric analysis in the Milicz forest district in Poland.
• Results  The methods based on granulometry provided better results than the pattern analysis. The analysis based on the 
Forest Data Bank/Cadastre polygons provided better results than the analysis based on the segmentation polygons.
• Conclusion  Granulometric analysis has proved to be a useful tool in the classification of orchards and other areas with 
forest vegetation. It is important in the context of reporting forest area to international organizations, forest management, 
and mitigating effects of climate change.
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1  Introduction

There are a number of forest definitions around the world. 
Some of them are formulated in national legislation and 
apply only to the forests of the respective state, and some 
are international. Poland, like many other countries, is 
obliged to report forest area for the Climate Convention 
(Kyoto Protocol) and the Food and Agriculture Organiza‑
tion of the United Nations (FAO/UN). Aerial and satellite 
imagery has been successfully used since the early 2000s 
to estimate forest area with an accuracy of 80–99% for 
forest areas, 95% for forests developed during the second‑
ary succession, and 75% for trees on agricultural land. 
The accuracies were calculated for the whole study sites 
and represent the percentage of area classified correctly 
according to the reference data (Kunz et al. 2000; Haap‑
anen et  al 2004; Wężyk and de Kok 2005; Próchnicki 
2006; Wang et al 2007a; b; 2008; Pekkarinen et al 2009; 
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McRoberts et al 2012; Pujar et al 2014; Kolecka et al 2015; 
Hościłło et al 2015; Thompson et al 2016; Szostak et al 
2017). Unlike data from Airborne Laser Scanning (ALS, 
active remote sensing technology), passive remote sens‑
ing data do not contain information on elevation, which is 
important for the forest definition formulated for reporting 
purposes. Currently, ALS data are available in many coun‑
tries of the world (in Poland within the ISOK project—IT 
system of Country Protection) and are increasingly used 
in remote sensing analyzes. The use of ALS data makes 
it possible to achieve or improve the results of forest area 
estimates (Castillo-Núñez et al. 2011; McRoberts et al. 
2012; Kolecka et al. 2015; Thompson et al. 2016; Naesset 
et al. 2016; Szostak et al. 2017). Land use is an important 
factor responsible for differences in official forest area 
statistics (Seebach et al., 2011). However, using remote 
sensing methods, land area can only be classified in terms 
of its coverage. From aerial or satellite coverage, it is not 
possible to determine the land use category according to 
BDOT (Terrain Object Database) or other national land 
use/land cover databases. There are areas covered with 
forest vegetation that are not forests according to the forest 
definition of the FAO/UN and the Polish Law on Forests 
1991 (e.g., post-agricultural areas with secondary succes‑
sion, swamps, and orchards).

However, it is difficult to distinguish urban green (forests 
and forest vegetation in communal areas) from regular forest 
complexes and secondary succession with remote sensing; 
it is possible to distinguish orchards. In this paper, we have 
chosen to compare two approaches, vector- and grid-based. 
The vector-based approach assumes that the regular spatial 
distribution of trees is reflected by the regular distribution 
of points representing their vertices, expressed in numerical 
form by corresponding statistical coefficients. Pattern anal‑
ysis-based methods have been used by Tanada and Blanco 
(2016) to detect orchards with an accuracy (the percentage 
of area classified correctly according to the reference data) 
of 73–99%. The grid-based approach assumes that the differ‑
ent structure of various forms of land use and cover (LULC) 
is reflected in satellite and aerial photographs in the form 
of raster images with a characteristic distribution of pixel 
values. Methods based on texture analysis and granulometry 
have been used by Aksoy et al. (2010, 2012), Mougel et al. 
(2008), Ranchin et al. (2001), Trias-Sanz (2006), Helmholz 
and Rottensteiner (2009), Ursani et al. (2012), Erfanifard and 
Rezayan (2014), Komba et al. (2015), Kupidura (2019), and 
Kupidura et al. (2019), with accuracy up to 96%. The use 
of both approaches is based on the assumption that the spe‑
cific regular structure of trees in orchards is different from 
the irregular structure of forests (and other types of trees). 
According to this hypothesis, this difference is so impor‑
tant that both the analysis of the distribution of the regular‑
ity of trees in the orchard and the analysis of the texture, 

depending on this distribution, should allow us to distinguish 
the distinctive features of these two different types of tree 
stands.

2 � Materials and methods

2.1 � Brief presentation of tested methods

The study was conducted using two methods: pattern anal‑
ysis of the mutual distribution of points representing tree 
crowns and texture analysis using the granulometric method. 
The main assumptions of the two methods used are pre‑
sented below.

2.1.1 � Pattern analysis

The basic concept that describes the distribution of points 
based on density is homogeneity. The distribution of points 
is homogeneous if the density of points is the same in all 
identical subareas. It can be tested using the χ2-test. Conver‑
sion of point data into continuous data allows their analysis 
with areas (after reclassification) or geostatistical data. Point 
distribution analysis as a method of analyzing the distribu‑
tion of objects in geographic space dates back to the turn of 
the 1950s and early 1960s (Gatrell et al. 1995). This distri‑
bution can be described as clumped, scattered, and random 
(Pielou 1959; Ek 1969; Robeson et al. 2014). The distribu‑
tion factor is a statistical measure expressed in numbers. 
It requires establishing the null hypothesis that objects are 
randomly distributed and then proving or disproving this 
hypothesis with a certain margin of error expressed by the 
significance level “p.” Li and Zhang (2007) compared vari‑
ous methods of tree distribution analysis in spruce-fir stands, 
including nearest neighbor, K-Ripley function, and autocor‑
relation. Pattern analysis algorithms are inferential statistics; 
they start with the null hypothesis that your traits or the 
values associated with your traits have a spatially random 
pattern. They then calculate a p-value, which is the prob‑
ability that the null hypothesis is correct (that the observed 
pattern is simply one of many possible versions of complete 
spatial randomness). Calculating a probability can be impor‑
tant when you need to have a high degree of confidence. The 
following list has some of the most popular algorithms for 
pattern analysis and gives a brief description of each (https://​
pro.​arcgis.​com/​en/​pro-​app/​latest/​tool-​refer​ence/​spati​al-​stati​
stics/​an-​overv​iew-​of-​the-​analy​zing-​patte​rns-​tools​et.​htm):

Average nearest neighbor—Calculates a nearest neighbor 
index based on the average distance of each feature to its 
nearest neighbor feature
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High/low clustering—Measures the degree of clustering 
for either high or low values using the Getis-Ord General 
G statistic
Incremental spatial autocorrelation—Measures spatial 
autocorrelation for a range of distances and optionally 
produces a line plot of these distances and their corre‑
sponding z-values. Z-values reflect the intensity of spa‑
tial clustering, and statistically significant peak z-values 
indicate distances where spatial processes that promote 
clustering are most pronounced. These peak distances are 
often appropriate values for tools with a distance band or 
distance radius parameter.
Multi-distance spatial cluster analysis (Ripley’s k-func‑
tion)—Determines whether features or the values associ‑
ated with features exhibit statistically significant cluster‑
ing or dispersion over a range of distances.
Spatial autocorrelation—Measures spatial autocorrela‑
tion based on feature locations and attribute values using 
Global Moran’s I-statistic.

2.1.2 � Texture analysis using granulometry

Granulometry was introduced by Haas et al. (1967) for binary 
images. This was later extended to grayscale images; also local 
granulometric analysis was introduced (Dougherty et al. 1992; 
Vincent 1996), allowing to analyze the neighborhood of each 
pixel. Granulometry is based on a series of morphological 
operations: opening and closing with a successively increasing 
size of the structuring element that determines the scope of the 
operation. This allows for the quantification of the occurrence 

of texture elements of various types and sizes. In this way, 
each pixel is assigned a set of values that allow analysis of the 
texture in this vicinity. The effectiveness of local granulometry 
in relation to other methods of texture analysis as a tool to 
support land cover/land use classification in satellite imagery 
has been demonstrated by Kupidura and Uwarowa (2017) and 
Kupidura (2019), among others.

In the research, also opening by reconstruction and closing 
by reconstruction have been tested. Morphological operations 
by reconstruction are based on geodesic reconstruction, which 
consist in the morphological operations of erosion and geodesic 
dilation (Nieniewski 2005). The application of these operations 
does not change the shape of the image elements that are 
not completely removed, unlike simple opening and closing 
operations. The reason for applying granulometric analysis 
based on operations of this type is the possibility of occurrence 
of younger forest areas with a regular planting distance, which 
may resemble orchards in texture. At the same time, these 
areas occur within or are directly adjacent to larger forest areas. 
Granulometric analysis based on operations by reconstruction 
should therefore, it is assumed, differentiate these two types of 
areas—artificial regeneration in the immediate vicinity of forest 
areas and orchard meadows.

2.2 � Study area and data

The Milicz forest district is located in the Katowice Regional 
Directorate of state forests in Lower Silesia (Fig. 1). The 
information on habitats, species, age, and volume of the 
stands is summarized in Table 1.
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Fig. 1   The area of investigation—the Milicz Forest management

Page 3 of 14    101Annals of Forest Science (2021) 78: 101



1 3

Airborne laser scanning data (ALS) were acquired in 
August 2015 using a Riegl LMSQ680i laser scanning 
system with a pulse frequency of 360 kHz, resulting in 
point clouds with an average of 10 pulses/m2. The mean 
flight altitude was 550 m, and the field of view of the 
scanning system was 60 degrees. Together with the point 
clouds, the data provider generated a digital surface model 
(DSM) and a digital terrain model (DTM) with a very 
high spatial resolution of 0.5 m using TerraSolid software. 
This DTM was used to normalize all returns from the raw 
point clouds (Stereńczak et al., 2018). Based on the digi‑
tal terrain model and the digital surface model, the can‑
opy height model and the normalized differential surface 
model, respectively, were generated. Based on the point 
cloud from airborne laser scanning, the “Intensity Image” 
was generated, i.e., the image representing the average 
intensity of laser beam reflection for individual pixels.

Vector data representing forest divisions (in the state 
forests) available on the website Forest Data Bank as of 
2016 (www.​bdl.​lasy.​gov.​pl) and agricultural plots (in the 
areas surrounding the state forests) available on LPIS 
Agricultural Plots Identification System as of 2016 (www.​
geopo​rtal.​gov.​pl) were combined into a set of polygons for 
which the statistics for pattern and granulometry analy‑
sis will be calculated. The second set of polygons was 
generated based on the digital land cover model in ENVI 
5.0. (https://​www.​l3har​risge​ospat​ial.​com/​Softw​are-​Techn​
ology/​ENVI) using the feature extraction extension. The 
value of the variable defining the number and size of poly‑
gons—0.95 was chosen by trial and error.

Based on the vegetation indices and canopy height 
model, a mask of forest vegetation (2 m) was also used, 
generated as part of the REMBIOFOR project “Remote 
sensing determination of wood biomass and carbon stocks 
in forests” (BIOSTRATEG1/267755/4/NCBR/2015), con‑
ducted at the Forest Research Institute between 2014 and 
2018 (www.​rembi​ofor.​pl). A digital orthophotomap in 
false color representation (CIR) and the spatial resolution 
of 0.2 m was also used to create reference layers and as a 
basis for illustrations (Fig. 2).

2.3 � Pre‑processing

The general scheme of the analysis is presented in Figure 3.
The values of average nearest neighbor and Ripley’s 

K-function ratios were calculated for the Forest Data Bank/
Cadastre and object segmentation polygons. The analysis 
was performed using a script written in the Python program‑
ming language in ArcGIS Pro (www.​arcgis.​com, ESRI cor‑
poration—www.​esri.​com). Points representing tree canopies 
higher than 2 m were generated based on the canopy height 
model in the software Impact Lidar (Deutscher et al., 2016).

The following datasets were used for the granulometric 
analysis:

An image representing the average intensity of reflectivity 
(“int”) at a resolution of 0.5 m
An image representing the average intensity of reflec‑
tance, clipped to the boundaries of the areas occupied by 
forest vegetation > 2 m (“clip”) at a resolution of 0.5 m
An image representing mask of forest vegetation > 2 m 
(“mask”) at a resolution of 0.5 m.

2.4 � Layer preparation

The average nearest neighbor and K-Ripley coefficients were 
mapped to the Forest Data Bank/Cadastre and object seg‑
mentation polygons. The tools are available in the ArcGIS 
toolbox and are designed to perform the pattern analysis 
based on the location of points representing single trees. 
They are explained in the “pattern analysis” section. Raster 
layers were then created for further classification.

Twelve layers were created based on three datasets each 
for granulometric analysis in the software Blue Note 1.1.5 
(https://​sourc​eforge.​net/​proje​cts/​bluen​ote/):

3 granulometric maps by opening (“1–3”)
3 granulometric maps by closing (“4–6”)
3 granulometric maps by opening by reconstruction 
(“rec1-3”)

Table 1   Habitat, species, age, and volume of stands in the Milicz forest district

Stand characteristics Habitat Species Age Volume

Milicz forest department Fresh coniferous—27.8%
Fresh mixed deciduous—24%
Fresh deciduous—15.3%
Fresh coniferous—11.5%
Wet mixed deciduous—8.4%
Wet mixed coniferous—7.7%
Wet deciduous—3.3%
Riparian—1%
Other—1.1%

Pine—74.9%
Oak—10.6%
Beech—5.8%
Birch—2%
Alder—4.7%
Other—2%

0–20—12%
20–40—15%
40–60—29.6%
60–80—13.6%
80–100—12.7%
 > 100—15.6%

Beech—300 m3/ha
Pine—298 m3/ha
Alder—285 m3/ha
Oak—275 m3/ha
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3 granulometric maps by closing by reconstruction 
(“rec4-6”)

The terms “opening”, “closing,” and “reconstruction” 
are explained in the “Texture analysis using granulom‑
etry” section. In total, 36 layers were generated. The selec‑
tion was determined by the diversity of the products of 
the granulometric analysis. For the polygons Forest Data 

Bank/Cadastre and object segmentation, the average pixel 
values were calculated from the layers representing the 
results of the granulometric analysis. The mean values of 
average nearest neighbor, the K-Ripley coefficient, and 
36 layers resulting from the granulometric processing 
described in this section were assigned to the polygons 
representing orchards and other lands with forest vegeta‑
tion. Raster layers were created for further classification.

Fig. 2   Datasets: Ortophotomap, 
canopy height model, vegeta‑
tion mask, digital forest map/
Cadastre
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2.5 � Layer selection

To perform a first discrimination analysis, groups of test 
polygons were selected from Forest Data Bank/Cadastre and 
object segmentation representing orchards and other areas 
with forest vegetation (Fig. 4).

The basic statistics, i.e., minimum, maximum, ampli‑
tude, mean, standard deviation, and quartiles, were 
calculated for these polygons and 36 layers resulting 
from the granulometric processing. The differences (∆) 
between the mean values for orchards and other lands 

with forest vegetation are shown in the “Results” sec‑
tion. Further analyses were performed on the layers for 
which the difference between the means was more than 
30 (where 255 is the maximum value) for the polygons 
representing orchards and other lands with forest vegeta‑
tion. The threshold was selected based on visual analy‑
sis of the results of the granulometric analysis. One layer 
was discarded based on the visual analysis. The results 
of the pattern analysis are not included here, due to dif‑
ferent extreme values, possible to obtain (0-undefined, 
in case of the pattern analysis, and 0–255, in case of the 

Fig. 4   Test polygons from the 
Forest Data Bank/Cadastre and 
the object segmentation for the 
discriminant analysis
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granulometric analysis). However, the results of the pat‑
tern analysis were included in the subsequent processing.

2.6 � Classification

Selected layers representing different combinations of pat‑
tern analysis and granulometric processing results (sepa‑
rately for Forest Data Bank/Cadastre and object segmenta‑
tion polygons) were thresholded. In each case, we selected 
the best possible thresholds using the “trial and error” 
method. Two classes were distinguished on the resulting 
maps: “Orchards” and “Other areas with forest vegeta‑
tion”. Selected layers representing different combinations 
of pattern analysis and granulometric processing results 
(separately for Forest Data Bank/Cadastre and object seg‑
mentation polygons) were combined into 4 separate band 
compositions (2 methods vs. 2 sets of polygons) and sub‑
jected to the supervised parametric classification of maxi‑
mum likelihood using the 40 training polygons (twenty for 
each class) randomly dispersed across the study site but 
within the borders of Forest Data Bank/Cadastre and the 
object segmentation polygons representing “Orchards” and 
“Other areas with forest vegetation.”

2.7 � Accuracy assessment

We chose a number of randomly dispersed non-orchard poly‑
gons of similar area to the orchard polygons and assessed 
how well we discriminated between orchards and non-
orchards using a confusion matrix. We repeated the selection 
of non-orchards 3 times to obtain a measure of uncertainty 
in our results. The accuracy of the analysis carried out in 

this way was determined using the overall accuracy, Kappa 
coefficient, and commission (overestimation) and omission 
(underestimation) values. Overall accuracy is the amount 
of correctly classified pixels of total pixels of the image. 
Cohen’s Kappa coefficient is a statistic that is thought to 
be a more robust measure as it takes into account the pos‑
sibility of the agreement occurring by chance. The omission 
and commission values represent the underestimation and 
overestimation of each class.

3 � Results

The values of average nearest neighbor, the K-Ripley coef‑
ficient, and the mean values of 36 layers (resulting from the 
granulometric processing described in the previous section) 
were assigned to the polygons representing orchards and 
other lands with forest vegetation. Then, basic statistics, i.e., 
minimum, maximum, amplitude, mean, standard deviation, 
and quartiles, were calculated for these polygons. The dif‑
ferences (∆) between the mean values for orchards and other 
lands with forest vegetation are shown in Tables 2 and 3.

Further analysis was performed on the layers for which 
the difference between the mean values (for orchards and 
other areas with forest vegetation) was more than 30, both 
for the Forest Data Bank/Cadastre and object segmentation 
polygons. The threshold was chosen based on visual analysis 
of the results of the granulometric analysis. One of the lay‑
ers (“clip _rec_close1”) was rejected, based on the visual 
analysis as well.

The following layers were selected for further analysis:

Table 2   Band differentiation 
between the orchards and other 
lands with forest vegetation on 
the basis of zonal statistics—
Forest Data Bank/Cadastre 
polygons (standard deviation in 
brackets)

int int_rec clip clip_rec mask mask_rec

open1 22 (11.4-
15.5)

3.8 (5.5-6.3) 66.6 (31.3-
58.1)

69 (14.6-53.3) 48.3 (12.8-
51.1)

39.3 (1.8-39)

open2 35.6 (7.1-
20.9)

4.9 (5.6-8.8) 24 (22.4-
69.6)

50 (9.8-71.1) 7 (18.4-39.4) 23.5 (2.2-
51.3)

open3 -0.1 (5-5.06) -0.1 (5-5.6) -17.3 (35.3-
38)

12.9 (8.2-
46.4)

-15.7 (37.4-
25.4)

7.3 (3-35.6)

close1 17 (10-17.1) 5.1 (4.6-6.8) -2.4 (37.4-48) -30.2 (16.7-
22.2)

-1.8 (24.8-
35.6)

-19.1 (5.5-20)

close2 28.6 (7.3-
23.5)

15.4 (2.9-
13.6)

42.4 (30.2-
73.3)

-10  (14.2-
25.9)

25.2 (20.8-
53.8)

-8 (5.5-24.3)

close3 51.4 (8.3-
33.8)

25 (2-19.2) 68.4 (30.1-
73.3)

-6.8 (6.2-27) 61 (23-84.2) -6.7 (2.5-29)
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3rd band of the granulometric analysis based on closing 
on the image representing the average reflectance inten‑
sity—“Int_close3”.
3rd band of the granulometric analysis based on closing 
on the image representing the average reflectance inten‑
sity clipped to the borders of areas with forest vegeta‑
tion—“Clip_close3”.
1st band of the granulometric analysis based on opening 
by reconstruction on the image representing the average 
reflectance intensity clipped to the borders of areas with 
forest vegetation—“Clip_rec_open1”.
2nd band of the granulometric analysis based on opening 
by reconstruction on the image representing the average 
reflectance intensity clipped to the borders of areas with 
forest vegetation—“Clip_rec_open2”.
1st band of granulometric analysis based on opening on 
an image representing a mask of tall vegetation—“Mask_
open1”.
3rd band of granulometric analysis based on closing on 
an image representing a mask of tall vegetation—“Mask_
close3”.
3rd band of granulometric analysis based on opening by 
reconstruction on an image representing a mask of tall 
vegetation—“Mask_rec_open1”.

Two classes were distinguished in the resulting images: 
“Orchards” and “Other tree vegetation.” In this way, two sets 
of layers (created on the basis of polygons from Forest Data 
Bank/Cadastre and object segmentation) were obtained, 7 
layers each. In both cases, a composition was created from 
7 selected bands and put under a supervised classification 
using the maximum likelihood algorithm, based on the 

“training points” layer. Two compositions were made out of 
four pattern analysis bands for the Forest Data Bank/Cadas‑
tre and the object segmentation polygons. As in the case of 
the resulting images, two classes were distinguished on the 
two obtained reference maps: “Orchards” and “Other areas 
with forest vegetation.”

The Kappa values of the classification based on the gran‑
ulometric bands and the Forest Data Bank/Cadastre poly‑
gons varied between the 3 sets of test polygons and achieved 
higher values (89.2–95.3%) than the classification based on 
the pattern analysis bands (15.5–47.2%). The Kappa values 
of the classification based on the granulometric bands and 
the object segmentation polygons were also higher values 
(79.4–92.8%) than the classification based on the pattern 
analysis bands (43–58.7%) (Table 4). The Kappa values of 
the classification based on the granulometric bands achieved 
higher values (89.2–95.3%) for the Forest Data Bank/
Cadastre polygons than the object segmentation polygons 
(79.4–92.8%). This may be associated with greater regular‑
ity and consistency of the areas separated in this way. How‑
ever, in the case of pattern analysis composition, the trend 
is opposite. The values of the classification based on the 
pattern analysis bands achieved higher values (15.5–47.2%) 
for the Forest Data Bank/Cadastre polygons than the object 
segmentation polygons (43–58.7%). The classification per‑
formed on the composition of granulometric analysis seems 
to be more reliable here (Table 4).

In the accuracy analysis performed using polygons from 
Forest Data Bank/Cadastre and the reference map, the higher 
accuracy was obtained for the 1st band of the granulomet‑
ric analysis based on opening by reconstruction derived 
from the image representing the intensity of reflectance 

Table 3   Band differentiation 
between the orchards and other 
lands with forest vegetation on 
the basis of zonal statistics—
segmentation polygons 
(standard deviation in brackets)

int int_rec clip clip_rec mask mask_rec

open1 14.7 (12-
16.3)

1.3 (5.6-6.7) 14.7 (12.1-
16.3)

46.2 (14.6-
54.7)

61.9 (19.2-
57.4)

34.5 (3.2-44.6)

open2 23(6-22.9 1.9 (6.1-8.2) 10.6 (25.3-
57.9)

33.4 (11.2-
60.7)

26.5 (21.6-
53)

38.3 (3.4-67)

open3 -0.5 (5-5.8) -0.5 (5-5.8) -21 (40.9-
43.3)

13.5 (8.6-
40.6)

-7 (41.2-45.2) 18.7 (3.3-58.3)

close1 11.5 (11.7-
17)

1.8 (5.6-6.8) -16.7 (40.8-
55.4)

-31.1 (14.5-
25)

11.9 (29.5-
43.3)

-20.9 (9.7-
22.3)

close2 19.5 (7.3-
23.8)

10.3 (3.6-
13.3)

19.2 (34.3-
64.7)

-15.6 (11.9-
32.6)

44.6 (23.1-
64.9)

-10.9 (10.1-
28.6)

close3 31.8 (8.2-
35.8)

16.4 (2.3-
18.6)

33.8 (32.3-
68.1)

-9.6 (6.7-32) 70 (21.3-
86.4)

-7.6 (5.6-29.4)
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clipped to the borders of areas with high forest vegetation 
(“Clip_rec_open1”; Kappa = up to 73.5%) and the 3rd band 
of the granulometric analysis based on closing performed 
on the image representing a high vegetation mask (> 2 m) 
(“Mask_close3”; Kappa = up to 80.6%). The indices of the 
granulometric maps most useful in distinguishing the two 
analyzed classes indicate the characteristic features of the 
grains of the analyzed texture (Table 5).

In the accuracy analysis performed using object segmen‑
tation polygons and the reference map, the ranking of granu‑
lometric analysis products, based on the accuracy of clas‑
sification, is generally the same, as in the case of the analysis 
presented in Table 5. However, the results are significantly 
(and systematically) worse than in the previous case. Again, 
the highest accuracy was obtained for the 1st granulometric 
map based on opening by reconstruction, representing the 
reflectance intensity clipped to the borders of areas with high 
vegetation (“Clip_rec_open1”; Kappa = up to 57.4%) and 
the 3rd granulometric band based on closing derived from 
the image representing a mask of high vegetation (> 2 m) 
(“Mask_close3”; Kappa = up to 60.3%) (Table 6).

The same as for the classification performed based on the 
composition of bands, the Kappa values of the classification 
based on the granulometric bands achieved higher values for 
the Forest Data Bank/Cadastre polygons than the object seg‑
mentation polygons. Figure 5 shows the results of the clas‑
sifications based on the granulometric analysis using Forest 
Data Bank/Cadastre and object segmentation polygons. For 
representative purposes, the results were compared with a 
fragment of a digital orthophotomap with the spatial reso‑
lution of 0.5 m representing the largest orchard clusters in 
the research area of Milicz. The areas representing orchards 

are marked with dark gray and other areas with light gray. 
The figures also show the boundaries between the polygons 
representing orchards and other areas with forest vegetation 
(or without it) from the reference maps created on the basis 
of the Forest Data Bank/Cadastre and object segmentation 
polygons.

4 � Discussion

Due to the nature of the structure of forests and orchards, 
this study uses an analysis based on morphological opera‑
tions (opening and closing)—simple and by reconstruc‑
tion. The rationale for the use of the reconstruction-based 
granulometric analysis is the possibility of sparsely planted 
wooded areas with an orchard-like texture in the vicinity of 
much denser tree stands, and these areas should be differ‑
entiated by this analysis. The extraction of orchards, vine‑
yards, and other regularly distributed high-growing crops, 
performed by numerous authors, resulted in an accuracy 
over 90% (Tanada and Blanco, 2016; Gordon and Philipson, 
xxxx; Geneletti and Gorte 2003; Viau et al. 2005; Warner 
and Steinmaus 2005; Trias-Sanz 2006; Kumar et al. 2008; 
Mathews and Jensen, 2012; Fieber et al. 2013; Sicre et al. 
2014; Nolan et al. 2015; Karakizi et al. 2016; Mirakhorlou 
et al. 2017; Roy et al. 2018), using various types of indica‑
tors, classification types, models, and other methods.

The pattern analysis resulted in relatively low and 
unstable accuracy which does not reflect the regularity of 
the granulometric analysis results. The single band thresh‑
olding results were not included, due to the inability to 
visually distinguish orchards and other areas with forest 

Table 4   Accuracy analysis of the classification performed on the compositions of pattern analysis and granulometric bands using polygons from 
Forest Data Bank/Cadastre and the object segmentation according to the reference map

Data (Forest Data Bank/Cadastre) Accuracy Kappa Other forest vegetation Orchards

1-commission 1-omission 1-commission 1-omission

ANN + DiffK 74.4% 47.2% 99.7% 46% 67.4% 99.9%
56.5% 26.1% 98.7% 42% 36.9% 98.4%
57.8% 15.5% 85% 55% 30.4% 67%

Composition 94.6% 89.2% 100% 90.3% 89.2% 100%
97.9% 95.3% 94.1% 99.7% 99.9% 97.1%
94.6% 89.2% 100% 90.3% 89.2% 100%

Data (object segmentation) Accuracy Kappa Other forest vegetation Orchards
1-commission 1-omission 1-commission 1-omission

ANN + DiffK 93.3% 58.7% 99.3% 44.9% 93% 100%
90.2% 43% 60.2% 40.2% 92.6% 96.6%
78.9% 57.7% 68.2% 86.6% 89.5% 73.9%

Composition 96.4% 92.8% 94.7% 98.1% 98.2% 94.8%
93.2% 86.5% 88.6% 97.9% 98.1% 89.4%
89.7% 79.4% 81.2% 97.7% 98.1% 84%
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Table 5   Accuracy analysis 
performed using polygons from 
Forest Data Bank/Cadastre 
polygons according to the 
reference map (best results 
with green background). The 
values in brackets represent 
the threshold values used to 
distinguish the two analyzed 
classes

Data (Forest Data 

Bank/Cadastre)

Accuracy Kappa Other forest vegetation Orchards

1-commission 1-omission 1-commission 1-omission

Int_close3

(45)

82.1% 64.2% 100% 73.7% 64.2% 100%

82.5% 64.7% 100% 74.4% 64.2% 100%

82.1% 64.2% 100% 73.7% 64.2% 100%

Clip_close3

(90)

74.7% 49.6% 100% 66.4% 49.3% 100%

75.2% 49.8% 100% 67.3% 49.3% 100%

74.7% 49.3% 100% 66.4% 49.3% 100%

Clip_rec_open1 (81) 86.5% 73% 100% 78.8% 73% 100%

86.8% 73.5% 100% 79.5% 73% 100%

86.5% 73% 100% 78.8% 73% 100%

Clip_rec_open2 (47) 68.5% 36.9% 100% 61.4% 36.9% 100%

69.1% 37.4% 100% 62.3% 36.9% 100%

68.5% 36.9% 100% 61.4% 36.9% 100%

Mask_open1

(72)

81% 61.9% 100% 72.5% 61.9% 100%

81.3% 62.4% 61.9% 100% 100% 73.2%

81% 61.9% 100% 72.5% 61.9% 100%

Mask_close3 (55) 81.1% 62.3% 99.9% 72.7% 62.3% 99.9%

90.4% 80.6% 100% 84.1% 80.3% 100%

90.2% 80.3% 100% 83.6% 80.3% 100%

Mask_rec_open1 (38) 84.3% 69% 100% 76.1% 68.5% 100%

84.6% 69% 100% 76.8% 68.6% 100%

84.3% 68.6% 100% 76.1% 68.5% 100%
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Table 6   Accuracy analysis 
performed using object 
segmentation polygons 
according to the reference 
map (best results with green 
background). The values in 
brackets represent the threshold 
values used to distinguish the 
two analyzed classes

Data (Object 

segmentation)

Accuracy Kappa Other forest vegetation Orchards

1-commission 1-omission 1-commission 1-omission

Int_close3

(45)

75.7% 51.4% 100% 67.4% 51.4% 100%

75.6% 51.3% 100% 67.2% 51.3% 100%

75.6% 51.3% 100% 67.2% 51.4% 100%

Clip_close3

(90)

69.6% 39% 100% 62.2% 39% 100%

68.8% 37.6% 98.6% 61.7% 39% 96.7%

69.4% 38.9% 100% 62% 39% 100%

Clip_rec_open1 (81) 78.8% 57.6% 100% 70.3% 57.6% 100%

77.8% 55.7% 98.2% 69.7% 57.5% 97%

78.7% 57.4% 100% 70.1% 57.5% 100%

Clip_rec_open2 (47) 62.3% 24.5% 100% 57.3% 27.3% 90%

63% 26.1% 98.7% 57.6% 27.5% 95.3%

61.5% 23.1% 95.6% 56.8% 27.5% 86.4%

Mask_open1

(72)

71% 42% 94% 64.5% 47.9% 89%

71.9% 43.9% 96.1% 64.7% 47.8% 92.5%

71% 42% 94.2% 64.3% 47.8% 89.2%

Mask_close3 (55) 80.2% 60.3% 100% 71.7% 60.3% 100%

79.4% 58.8% 98.6% 71.2% 60.2% 97.7%

80% 60.2% 100% 71.5% 60.3% 100%

Mask_rec_open1 (38) 73.2% 46.4% 100% 65.2% 46.4% 100%

72.2% 44.5% 98.2% 64.6% 46.4% 96.2%

73.1% 46.3% 100% 65% 46.4% 100%
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vegetation, even closely to the reference image. However, 
it turned out that satisfactory accuracy (Kappa value up to 
95.3%) can also be obtained by using granulometry-based 
methods. The best results were obtained using the classifi‑
cation on the composition of selected granulometry bands. 
The supervised classification of the composition of bands 
is easier and requires less time than the selection of proper 
thresholds. It does not require many training polygons, just 
well selected. For the single bands, the best results were 
obtained using the thresholding on the image represent‑
ing the values of the 3rd granulometry band by closing 
on the mask of high vegetation (“Mask_close3”) and the 
1st granulometry band by opening and reconstruction on 

the image representing the reflectance intensity clipped 
to the borders of the areas with high vegetation (“Clip_
rec_open1”). This is due to the relatively small size of 
objects—trees (opening, index 1; granulometry based on 
opening analyzes the amount of brighter objects in the 
image) and a slightly larger size of the space between them 
(closing, index 3; granulometry based on closing analyzes 
the amount of darker objects in the image), especially in 
the case of orchards. The texture in this respect turns out 
to be a distinctive feature for these two classes, allow‑
ing a relatively high (Kappa = 57.4–80.6%) classification 
accuracy. The results obtained for other granulometric 
maps are characterized by lower accuracy (with some 

Fig. 5   The results of orchard classification based on 2 best results of granulometric analysis and the Forest Data Bank/Cadastre and the segmen‑
tation polygons
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exceptions), which proves that the two classes are more 
similar in this aspect of texture.

International organizations such as the FAO/UN and 
the UNFCCC require signatory countries to maintain and 
increase the area of forests and other areas with forest veg‑
etation. The methodology proposed in this article can help 
distinguish forests from orchards (or other regular crops of 
over 2 m height) with a consistent and objective method‑
ology. Forests play an important role in the accumulation 
of carbon stocks, the release of which into the atmosphere 
would increase the negative effects of climate change. In 
addition, forests are important for biodiversity, provide envi‑
ronmental services, and influence quality of life and health. 
Regular crops imitating forests (such as orchards) are able 
to accumulate carbon and play some role in the ecosystem 
as well, but nowhere near compared to natural forests. So, 
by using good monitoring methods regarding forest vegeta‑
tion, we are not only improving this tool, but also solving 
many other problems that contribute to the management and 
protection of forest vegetation.

5 � Conclusions

Granulometry has proved to be a useful tool in the classi‑
fication of orchards and other areas with forest vegetation. 
The methods based on granulometry provided better results 
than the pattern analysis. The analysis based on the Forest 
Data Bank/Cadastre polygons provided better results than 
the analysis based on the segmentation polygons. Classi‑
fication of orchards and other areas with forest vegetation 
is important in the context of reporting forest area to inter‑
national organizations, forest management, and mitigating 
effects of climate change.
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