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Combining Weibull distribution 
and k‑nearest neighbor imputation method 
to predict wall‑to‑wall tree lists for the entire 
forest region of Northeast China
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Abstract 

Key message:  We propose a coupled framework to combine the strengths of the Weibull function in modeling 
diameter distributions and the ability of the k-nearest neighbor (kNN) method to impute spatially continuous forest 
stand attributes for the prediction of wall-to-wall tree lists (lists of stems per hectare by species and diameter at breast 
height (DBH)) at regional scales. The tree lists of entire Northeast China’s forests predicted by the above framework 
reasonably reflect the species-specific tree density and diameter distributions.

Context:  Detailed tree lists provide information about forest stocks disaggregated by species and size classes, which 
are crucial for forest managers to accurately characterize the current forest stand state to formulate targeted forest 
management strategies. However, regional tree list information is still lacking due to limited forest inventory.

Aims:  We aimed to develop a coupled framework to enable the prediction of wall-to-wall tree lists for the entire for-
est region of Northeast China, then analyze the species-specific diameter distributions and reveal the spatial patterns 
of tree density by species.

Methods:  A two-parameter Weibull function was used to model the species-specific diameter distributions in 
the sample plots, and a maximum likelihood estimation (MLE) was used to predict the parameters of the Weibull 
distributions. The goodness-of-fit of the predicted species-specific Weibull diameter distributions in each plot was 
evaluated by Kolmogorov-Smirnov (KS) test and an error index. The kNN model was used to impute the pixel-level 
stand mean DBH.

Results:  Weibull distribution accurately described the species-specific diameter distributions. The imputed stand 
mean DBH from the kNN model showed comparable accuracy with earlier studies. No difference was detected 
between predicted and observed tree lists, with a small error index (0.24–0.58) of diameter distributions by 
species. The fitted species-specific diameter distributions generally showed a right-skewed unimodal or reverse 
J-shaped pattern.
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1  Introduction
As knowledge of the total stand volume, aboveground 
biomass, or basal area is insufficient, forest managers 
cannot accurately characterize the current stand state, 
project the future growth and yield, formulate the harvest 
schedules, and prioritize the stands for treatments (e.g., 
thinning or regeneration harvest) (Mauro et  al. 2019). 
Accordingly, detailed information about forest stocks 
disaggregated by species and size class is of primary 
importance for effective forest resource management 
(Brosofske et  al. 2014). Notably, detailed tree lists [lists 
of stems per hectare by species and diameter at breast 
height (DBH)] (Temesgen et al. 2003) can be used to sat-
isfy the above requirements. Therefore, the prediction of 
spatially continuous tree lists is urgently needed for these 
evaluations and is an important output of a complete for-
est inventory.

Tree lists can be used as inputs for tree and stand pro-
jection models (growth and yield models) to predict tree 
growth (Lamb et  al. 2018) and assess stand-level struc-
tures (Temesgen et al. 2003). In particular, regional tree 
lists provide key information for the initialization of for-
est landscape models (e.g., LANDIS PRO) to simulate the 
long-term effects of succession, climate change, and dis-
turbances (e.g., fire and pests) on forest composition over 
large areas (Duan et al. 2022; Huang et al. 2021). There-
fore, spatially explicit tree lists are required to develop 
tactical forest management in response to various dis-
turbances. The generated maps of wall-to-wall tree lists 
can be used as valuable indicators by forest managers to 
intuitively understand the species-specific density distri-
bution at different DBH classes, evaluate the necessity of 
thinning, and plan the location and intensity of the next 
selective cuttings (Valbuena et al. 2014).

The collection of detailed tree list information contigu-
ously across large forest regions is often not practical as 
it is time-consuming, labor-intensive, and spatially con-
strained (Zhang et  al. 2019). In Northeast China, for-
ests cover approximately 45 million hectares, and most 
forested lands are located in mountains with few roads. 
Due to the large forested land base and difficult access, 
detailed tree lists are only available for limited sample 
stands or plots. Stand-level inventory information, such 
as stand DBH, stand height, and species composition, 
collected from the national forest inventory (Zhang and 
Liang 2014), is available for thousands of stands in each 

forestry bureau. This information can be imputed to large 
areas by integrating remotely sensed data with com-
plete spatial coverage (Fu et al. 2019; Zhang et al. 2018a). 
Therefore, an emerging need exists to develop a cost-
effective methodology that integrates forest inventory 
data, remotely sensed data, and other ancillary data sets 
to predict wall-to-wall tree lists for forest regions based 
on limited sample plot data.

Tree lists can be approximated using species-specific 
diameter distributions for mixed forest stands (Bro-
sofske et  al. 2014). Therefore, many studies have used 
stand- or plot-level information measured on the ground 
to generate tree lists using a parametric diameter distri-
bution modeling approach (Bankston et  al. 2021; Olof-
sson and Olsson 2018). This approach usually uses a 
probability density function (PDF) (e.g., gamma, beta, 
exponential, log-normal, Johnson’s SB, Weibull) to fit 
the diameter distribution for each stand and then pre-
dicts the PDF parameters using stand attributes (Liu 
et  al. 2009; Temesgen et  al. 2003). The two-parameter 
Weibull function has been reported to be the simplest 
and most accurate PDF for diameter distribution mod-
eling for tree species worldwide, owing to its flexibility 
in describing different shapes of diameter distributions 
and fewer parameters (Diamantopoulou et  al. 2015; 
Schmidt et  al. 2020; Schütz and Rosset 2020). Schmidt 
et al. (2020) modeled the diameter distributions of clonal 
eucalyptus stands in Brazil using a Weibull function and 
re-measured information from 56 permanent sample 
plots as predictor variables. Schütz and Rosset (2020) 
compared different methods of predicting Weibull dis-
tribution parameters to better describe the diameter 
distributions of Norway spruce (Picea abies (L.) Karst.) 
and European beech (Fagus sylvatica L.) in monospe-
cific, regular temperate European forests. However, the 
diameter distribution modeling approach is only suitable 
for simple stands with few species and small contiguous 
areas (Temesgen et al. 2003). For large regions, the appli-
cation of the Weibull diameter distribution is limited by 
the availability of the stand attributes that are assumed 
to have strong correlations with the PDF parameters, 
which can be predicted by nonparametric imputation 
methods (Fu et al. 2019).

The nonparametric k-nearest neighbor (kNN) impu-
tation model has been widely applied to predict wall-
to-wall forest stand attributes across large regions as 

Conclusion:  Overall, the coupled framework developed in this study was well-suited for predicting the tree lists of 
large forested areas. Our results evidenced the spatial patterns and abundance of tree species in Northeast China and 
captured the forest regions affected by disturbances such as fire.
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it can simultaneously predict a suite of response vari-
ables, such as species-specific volume (Breidenbach 
et al. 2010), species-level biomass (Fu et al. 2019), basal 
area (Wilson et al. 2012), or stand mean DBH (Zhang 
et al. 2018b). kNN imputation is also a reliable strategy 
for the attribute prediction of complex forest stands as 
it can maintain both the spatial and attribute covari-
ance structures of the stand attributes (Temesgen et al. 
2003). The process of kNN imputation for generat-
ing wall-to-wall stand attributes (response variables) 
involves computing the statistical distance between 
the unsampled target pixel and the reference samples 
(neighbors) and then assigning the mean value of the 
kNNs’ attributes to the target pixel (Brosofske et  al. 
2014). In the development of a kNN imputation model, 
in addition to the suitable selection of distance met-
rics and k values, the selection of predictor variables 
can be more crucial. The predictor variables should 
be functionally or statistically related to the response 
variables (Eskelson et  al. 2009). The predictor vari-
ables used in the kNN model built for stand attributes 
imputation usually include soil, climate, topographic 
variables, and vegetation indices derived from opti-
cal remote sensing imagery, such as Landsat (Gjertsen 
2007) and Moderate Resolution Imaging Spectroradi-
ometer (MODIS) (Fu et  al. 2019; Zhang et  al. 2018a). 
The use of airborne light detection and ranging 
(LiDAR) in the kNN model for the prediction of forest 
attributes has been rapidly increasing and is promising 
for application in specific forest management (Hudak 
et al. 2008; Mauro et al. 2019). For example, the accu-
rate prediction of fine-scale (e.g., tree-level or stand-
level) attributes might require predictor variables with 
three-dimensional and high-resolution information. 
However, LiDAR lacks imaging capabilities and cannot 
provide spatially continuous maps (Chi et  al. 2015). 
Therefore, optical imagery is more suitable for use 
in the kNN model to generate the wall-to-wall stand 
attributes across large regions.

The objective of this study was to develop a coupled 
framework combining the strengths of the Weibull 
function in modeling diameter distributions and the 
ability of the kNN method to impute spatially con-
tinuous forest stand attributes for the prediction of 
wall-to-wall tree lists at regional scales based on lim-
ited sample plot data via the integration of national 
forest inventory, remotely sensed, and other ancillary 
data. Further, the coupled framework was tested and 
assessed, and the wall-to-wall tree lists at a 250-m 
spatial resolution were predicted for the entire forest 
region of Northeast China. Finally, the species-specific 
diameter distributions were analyzed and the spatial 
patterns of tree density by species were revealed.

2 � Material and methods
2.1 � Study area
The study area is located in northeastern China (38° 
42′–53° 35′ N, 115° 32′–135° 09′ E) and covers 124 
million hectares, encompassing three provinces (Hei-
longjiang, Jilin, and Liaoning) and the eastern part of 
the Inner Mongolia Autonomous Region. The area is 
divided into seven major subregions that reflect diverse 
climates, terrains, soils, and vegetation (Fu et al. 2019): 
the Greater Khingan Mountains (GKM), Lesser Khin-
gan Mountains (LKM), Changbai Mountains (CBM), 
Sanjiang Plain (SJP), Songnen Plain (SNP), Liaohe Plain 
(LHP), and Hulun Buir Plateau (HBP) (Fig. 1). Approxi-
mately 40% of the region is forested (Pan et  al. 2011), 
with forests mainly distributed over the Greater Khin-
gan, Lesser Khingan, and Changbai Mountains. The 
forests in Northeast China are mixed, spanning various 
forest types, such as cold-temperate conifer mixed for-
ests and temperate coniferous and broad-leaved mixed 
forests. Cold-temperate conifer mixed forests are dis-
tributed in the northern part of the Greater Khingan 
Mountains and are dominated by larch (Larix gmelinii 
(Rupr.) Kuzen), white birch (Betula platyphylla Suk.), 
aspen (Populus davidiana Dode), spruce (Picea koraien-
sis Nakai), Asian black birch (Betula davurica Pall., 
hereafter black birch), Mongolian oak (Quercus mongol-
ica Fisch. ex Ledeb.), Mongolian Scotch pine (Pinus syl-
vestris var. mongolica Litv., hereafter Scotch pine), and 
willow (Chosenia arbutifolia (Pall.) A. Skv.). Temperate 
coniferous and broad-leaved mixed forests are distrib-
uted in the Lesser Khingan and Changbai Mountains, 
mainly composed of Korean pine (Pinus koraiensis Sieb.
et Zucc.), larch, fir (Abies nephrolepis (Trautv.) Maxim.), 
spruce, Mongolian oak, white birch, aspen, ribbed birch 
(Betula costata Trautv.), basswood (Tilia amurensis 
Rupr.), mono maple (Acer mono Maxim.), elm (Ulmus 
pumila L.), Manchurian walnut (Juglans mandshurica 
Maxim., hereafter walnut), Manchurian ash (Fraxinus 
mandschurica Rupr., hereafter ash), and Amur corktree 
(Phellodendron amurense Rupr.).

2.2 � Field data
Two types of field data ( plot and stand) were collected 
for this study. The limited sample plot data with detailed 
tree lists were used to build species-specific Weibull dis-
tribution parameter prediction models (WDPPMS), and 
the stand inventory data without tree lists were used as 
response variables in the kNN imputation model to pre-
dict the wall-to-wall stand attributes.

The detailed tree lists of 641 rectangular (20 m × 30 
m) sample plots were measured from 2009 to 2013 in the 
study area. The sample plots were mainly distributed over 
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the Greater Khingan Mountains, Lesser Khingan Moun-
tains, and Changbai Mountains (Fig.  1) and contained 17 
major tree species in Northeast China. The plot number, 
GPS coordinates, elevation, slope, forest type, and canopy 
density for each plot were recorded. Within each plot, tree 
species, diameter at breast height (DBH), and tree height for 
every tree with a DBH larger than 5 cm were measured. The 
arithmetic mean DBH by species in each plot was calculated 
by dividing the sum of tree DBHs by the number of corre-
sponding tree species.

The stand inventory data were derived from the 
National Secondary Forest Resources Continuous Inven-
tory in China and organized as stand polygons. A total of 
25,000 forest stand polygons (average polygon size: 20.6 
ha) from Northeast China surveyed in the early 2000s 
were collected from the National Forestry and Grass-
land Data Center (http://​www.​cfsdc.​org/). Each stand 
polygon was a contiguous area ranging from a few hec-
tares to tens of hectares with relatively homogeneous 
forest attributes, such as stand mean DBH, stand height, 
stand age, stand volume density, tree species composition 
(volume proportion by species), and dominant species. 

The stand mean DBH is the DBH corresponding to the 
average basal area of the stand, which differs from the 
arithmetic mean DBH. In this study, owing to the lack 
of precise conversion relationships between stand mean 
DBH and mean arithmetic DBH of major tree species in 
Northeast China, the stand mean DBH was used instead 
of the mean arithmetic DBH by species to predict the 
wall-to-wall Weibull diameter distribution parameters by 
species. The geometric center sites of 25,000 stand poly-
gons are shown in Fig. 1.

Polygon boundaries were generated by interpreting 
aerial photos in accordance with the technical regula-
tions for forest management planning and design inven-
tory in China. Within each polygon, stand attributes were 
estimated using angle-count sampling. Each plot was 
more than 50-m away from the stand boundary, and the 
distance between the two angle-count plots was at least 
100 m (Zhang et al. 2018a). Trees with a DBH larger than 
5 cm were counted in each angle gauge plot (basal area 
factor = 1), and the DBH of each tree was converted to 
volume according to the species-specific DBH-volume 
relationships summarized by the National Forestry and 

Fig. 1  Seven subregions, forest cover fraction, and field data distribution in Northeast China

http://www.cfsdc.org/
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Grassland Data Center (http://​www.​cfsdc.​org/). The 
volume density of each angle gauge plot was derived by 
aggregating all single-tree volume estimates counted by 
species. Further, the stand volume density was estimated 
by averaging the volume density of all angle gauge plots 
in each polygon (Zhang et  al. 2018a). The species-level 
biomass of each stand polygon was transformed from the 
species-level volume based on species-specific biomass-
volume relationships (Fang et al. 1998).

2.3 � MODIS and environmental data
The selection of predictor variables is crucial when 
the kNN imputation method is employed to predict 
wall-to-wall stand attributes (e.g., stand mean DBH or 
species-level biomass). Forest stand attributes can be 
characterized by rich spectral information from multi-
spectral remote sensing images and are influenced by 
environmental factors. In this study, seven Moderate 
Resolution Imaging Spectroradiometer (MODIS) sur-
face reflectance bands from MOD09Q1 (b1–b2; 250 m) 
and MOD09A1 (b3–b7; 500 m) from 2000 were selected 
as basic data to derive the predictor variables for further 
stand attribute imputation. By averaging all reflectance 
values of each month in 2000, the above seven reflectance 
bands were processed into monthly data and resampled to 
250 m using nearest-neighbor interpolation. Several spec-
tral indices that correlate with the stand characteristics 
(Fu et al. 2019) were calculated from the monthly reflec-
tance bands (Additional file  1:  Table  S1). As the surface 
reflectance in Northeast China is largely affected by snow 
or frost cover from January to April and November to 
December (Zhang et al. 2013), only the monthly MODIS 
reflectance bands and spectral indices from May to Octo-
ber were used as predictor variables. To avoid imput-
ing stand attributes to non-forest areas, forest areas that 
were defined as tree cover greater than 10% (Schmitt et al. 
2009) were extracted using the MODIS Vegetation Con-
tinuous Fields (VCF) product MOD44B (250 m) for the 
year 2000.

Environmental data (e.g., topographic, climate, and 
soil data) that correlate with the stand attributes were 
selected as auxiliary predictor variables (Additional 
file 1: Table S1) to reduce prediction uncertainties due 
to environmental heterogeneity. Topographic data (ele-
vation, slope, and cosine of aspect) were derived from 
the Shuttle Radar Topography Mission (SRTM) digital 
elevation model (DEM), with a 90-m spatial resolution 
(http://​srtm.​csi.​cgiar.​org/). Climate data (mean annual 
temperature and cumulative precipitation during 1982–
2015; 250 m) were interpolated from the 103 meteorol-
ogy stations in Northeast China (https://​data.​cma.​cn/) 
using ANUSPLIN 4.3 software, in which a thin-plate 
spline function with the resampled SRTM DEM (250 

m) as the covariate was used (Fu et al. 2019). Other cli-
mate data, such as mean annual radiation and potential 
evapotranspiration from 1982 to 2015 with a spatial 
resolution of 0.1° × 0.1°, were derived from the China 
Meteorological Forcing Dataset (http://​westdc.​westg​
is.​ac.​cn). Soil data with a 1-km spatial resolution were 
derived from the Harmonized World Soil Database v1.2 
(Fao/Iiasa/Isric/Isscas/Jrc 2012). To match the spatial 
resolution of the MODIS data, the topographic data and 
other environmental data were resampled to a 250-m 
spatial resolution using bilinear interpolation and near-
est-neighbor interpolation, respectively.

2.4 � Overall framework for wall‑to‑wall tree list prediction
The framework for wall-to-wall tree list prediction 
included the following three steps (Fig.  2): (1) build-
ing Weibull distribution parameter prediction models 
(WDPPMS) with limited tree list data collected from 
sample plots to predict species-specific diameter distri-
butions in each pixel; (2) mapping spatially continuous 
stand attributes (e.g., species-level biomass and stand 
mean DBH) using the kNN imputation models based on 
stand inventory data, MODIS, and environmental data, 
and providing the independent variables for WDPPMs 
in each pixel; and (3) predicting the wall-to-wall tree lists 
over Northeast China by combining the Weibull diam-
eter distributions predicted by the WDPPMS and forest 
attributes imputed by the kNN models.

2.4.1 � Building Weibull distribution parameter prediction 
models (WDPPMS)

The two-parameter Weibull function was used to model 
the diameter distribution of the 641 plots by species; the 
function is expressed as follows:

where f(x) represents the probability density function 
for x, x represents the DBH, b and c are the shape and 
scale parameters of the Weibull function, respectively.

The maximum likelihood estimation (MLE) was used 
to predict the parameters of the two-parameter Weibull 
function for each species in each plot. Owing to its good 
statistical characteristics and applicability, MLE is gener-
ally considered to be the most frequently used method 
for predicting distribution parameters (Diamantopoulou 
et al. 2015). The MLE equation is as follows:

where x1,x2,…, xn are the sample observations, 
L(x1,x2,…, xn; θ) is the MLE function, and f(xi; θ) is the 

(1)f (x) =
b

c

x

c

b−1
exp −

x

c

b

(2)L
(

x1,x2, . . . , xn; θ
)

=

n
∏

i=1

f (xi; θ)

http://www.cfsdc.org/
http://srtm.csi.cgiar.org/
https://data.cma.cn/
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
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probability density function based on the unknown param-
eter θ. The maximum probability of the sample observa-
tions (x1,x2,…, xn) is necessary when the MLE method 
is used to predict the value of θ. If the MLE function (L) 
is differentiable, the value of θ must satisfy the following 
formula:

The unknown parameter θ can be predicted accord-
ing to (3). The MLE method was implemented using 
the R package, MASS. Once the shape (b) and scale (c) 
parameters of the Weibull diameter distributions for 
each species in each plot were obtained, the relationship 
between these two parameters and stand variables could 
be established. In this study, the arithmetic mean DBH 
by species was selected as the independent variable to 

(3)
dL

dθ
= 0

build WDPPMS for each species using the ordinary least 
squares (OLS) method.

2.4.2 � Mapping stand attributes
The wall-to-wall stand attributes, including species-level 
biomass and stand mean DBH, were mapped by integrat-
ing the forest attributes extracted from stand polygons 
(as response variables) with spatially continuous pre-
dictor variables (e.g., MODIS and environmental data), 
as described in Section  2.3, using the kNN imputation 
model. By comparing the prediction accuracy of 630 kNN 
models in imputing stand attributes, our previous study 
mapped the wall-to-wall species-level biomass in 2000 for 
forests in Northeast China using the optimal kNN model 
based on the random forest distance metric, single-month 
(September) MODIS predictor variables, and k = 7 (Fu 
et al. 2019). In this study, the kNN imputation model was 

Fig. 2  Workflow adopted for predicting the wall-to-wall tree lists over the forest region of Northeast China. WDPPMS, Weibull distribution parameter 
prediction models; DBH, diameter at breast height; kNN, k-nearest neighbor. The maps of species-level biomass were obtained from our previous 
study (Fu et al. 2019)
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used to map the stand mean DBH in 2000 for the forested 
region of Northeast China. The imputation process was 
implemented using the yaImpute package in R.

The kNN imputation method involves the identifica-
tion of the k-nearest reference samples in a feature space 
defined by the predictor variables for each target pixel. 
The values of each response variable within these k-near-
est samples are averaged and assigned to the target pixel. 
Formally, the nearest neighbors prediction, ∼y i , for the ith 
target pixel is calculated as follows (McRoberts 2012):

where { yij,  j = 1, 2, …, k} is the set of response variable 
observations for the k reference pixels that are nearest to 
the ith target pixel in feature space with respect to a given 
distance metric, and wij is the weight assigned to the jth 
nearest neighbor with 

∑k
j=1 wij = 1 . The wij is defined as 

follows:

where dij is the distance between the jth nearest-neigh-
bor reference pixel and ith target pixel.

To execute the kNN imputation models, a forest 
stand polygon (average polygon size of 20.6 ha) was 
used as the unit of observation. The MODIS and envi-
ronmental predictor variables of each stand polygon 
were calculated as the mean values of the raster cells 
(250-m spatial resolution) with more than 50% of the 
pixel area covered by the stand polygon. The 25,000 
stand polygons containing both response variables 
(stand attributes) and predictor variables (MODIS and 
environmental variables) were split into training and 
testing datasets using a 7:3 split ratio, 70% of which 
were used to build the kNN imputation model to pre-
dict wall-to-wall stand attributes (Fig.  2); the remain-
ing 30% of the stand polygons were used to evaluate the 
prediction accuracy.

2.4.3 � Predicting wall‑to‑wall tree lists
Maps of species-level biomass for the 17 major species 
in the study area in 2000 were derived from our previ-
ous study, where the prediction accuracy of the species-
level biomass (Additional file  1: Fig. S1) was provided 
(Fu et al. 2019). In this step, maps of species-level bio-
mass were used to predict the tree lists in each pixel 
by combining the Weibull diameter distribution by 
species. Once the parameters of the Weibull diameter 
distribution by species for each pixel were predicted 
by WDPPMS, the proportion of tree density at each 

(4)ỹi =

k
∑

j=1

wijy
i
j

(5)wij =
1/
(

1+ dij
)

∑k
j=1

[

1/
(

1+ dij
)]

diameter class by species (PTDS) could be calculated 
for each pixel. Thereafter, the proportion of the spe-
cies-level biomass at each diameter class (PSB) was cal-
culated by combining PTDS and single-tree biomass by 
species at each diameter class (Dong et al. 2014; Dong 
et  al. 2015). Finally, the wall-to-wall species-level bio-
mass was divided into each diameter class according to 
the PSB and converted to the tree density at each diam-
eter class (wall-to-wall tree lists) by dividing them by 
the single-tree biomass at each diameter class (Fig. 2).

2.5 � Accuracy assessment
To guarantee the reliable accuracy of our coupled 
framework, each step of the framework was assessed 
using various accuracy metrics.

In step 1, the Kolmogorov-Smirnov (KS) test (Riemann 
et al. 2010) and the error index proposed by Packalén and 
Maltamo (2008) were applied to assess the goodness-of-
fit of the two-parameter Weibull function for predicting 
the diameter distribution by species in each plot from 
the MLE. The KS test does not make any assumption 
about the distribution of data and quantifies the consist-
ency between the distributions of the two data sets (e.g., 
observed and predicted samples) based on the maximum 
difference (D) in their empirical distribution functions 
[e.g., F(x) and G(x)], which is defined as follows:

The larger the P value of the KS test, the higher the 
prediction accuracy of the DBH Weibull distribution 
parameters of each tree species obtained by MLE. For 
each tree species, the plots that passed the KS test were 
selected as training data to establish the relationship 
between the stand mean DBH and the two parameters 
of the Weibull distribution and further calculate the 
error index of the DBH distribution of each species in 
each plot. The error index for each plot was calculated 
as follows:

where fi and f̂i are the observed and predicted stem 
numbers of class i by species, respectively, k is the num-
ber of diameter classes, and N and N̂  are the observed 
and predicted stem numbers of all diameter classes by 
species, respectively. The class interval was 2 cm. The 
value of the error index ranges from 0 to 1, with 0 indi-
cating a perfect fit and 1 indicating no overlap of the dis-
tributions (Packalén and Maltamo 2008).

The WDPPMS was evaluated using R2, the root mean 
square error (RMSE), and bias. The three metrics were 
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calculated based on the parameters of the Weibull diam-
eter distribution function using leave-one-out cross-vali-
dation (LOOCV):

where n is the number of samples, yi is the observed 
value for sample i, ŷi is the predicted value for sample 
i, and yi is the mean value of all observed values. To 
assess the WDPPMS accuracy, n is the number of plots 
used to fit WDPPMS for each tree species, yi is the pre-
dicted shape (b) or scale parameter (c) value of plot i 
based on MLE, and ŷi is the predicted shape (b) or scale 
parameter (c) value of plot i based on WDPPMS.

In step 2, the accuracy of the predicted wall-to-wall 
stand mean DBH over the forest region of Northeast 
China was evaluated at two scales (stand and ecotype). 
The study area was classified into 239 ecotypes based 
on seven subregions, nine landforms (Additional file 1: 
Fig. S2), and five forest types (Additional file 1: Fig. S3). 
The seven subregions reflect differences in tempera-
ture and moisture conditions. Nine landforms (ridge, 
upper slope, sunny slope, semi-sunny slope, semi-shady 
slope, shady slope, flat slope, lower slope, and valley) 
were classified from DEM using a Topographic Position 
Index (Zhang et  al. 2009). Five forest types (evergreen 
coniferous, evergreen broad-leaved, deciduous conifer-
ous, deciduous broad-leaved, and mixed forest) were 
extracted from the resampled MODIS land cover prod-
uct MCD12Q1 (250 m) in 2000.

At the stand scale, the predicted stand mean DBH of the 
remaining 30% of stand polygons was calculated by aver-
aging the stand mean DBH values of all pixels with over 
50% of their area located in each forest stand polygon. 
Thereafter, both the observed and predicted stand mean 
DBH of the testing dataset were averaged to 65 ecotypes 
at the ecotype scale. The accuracy of the predicted wall-
to-wall stand mean DBH over the forest region of North-
east China at stand and ecotype scales was evaluated 
by calculating the R2, RMSE, bias, empirical cumulative 
distribution functions (ECDFs), and KS statistic (Eq. (6)) 
between the predicted and observed stand mean DBH. 
The R2, RMSE, and bias provide an overall assessment of 
the prediction accuracy. The ECDFs and KS statistics can 

(8)R2 = 1−

∑n
i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − yi
)2

(9)RMSE =

√

∑n
i=1

(

yi − ŷi
)2

n

(10)Bias =

∑n
i=1

(

yi − ŷi
)

n

quantify the discrepancy in the distributions of the pre-
dicted and observed stand mean DBH.

In step 3, to assess the accuracy of the predicted 
wall-to-wall tree lists in 2000, the tree lists of the 641 
sample plots in 2000 were first obtained as the valida-
tion data by transforming the tree lists of 641 sample 
plots from 2009 to 2013 by subtracting the DBH growth 
of the 17 species in the past 9–13 years using the age-
DBH relationships summarized in previous studies (Xu 
et  al. 2020; Zhang et  al. 2018b). The central points of 
the 641 sample plots were used to extract the predicted 
wall-to-wall tree lists at the corresponding pixel loca-
tions. Thereafter, the observed and predicted tree lists 
of the 641 sample plots in 2000 included the tree density 
(trees ha-1) of each diameter class by species was used 
to calculate the error index (Eq. (7)), which was used to 
evaluate the prediction accuracy of the wall-to-wall tree 
lists over Northeast China. We separately calculated the 
error indices by species for each plot and for all plots as 
a whole.

3 � Results
3.1 � Weibull distribution parameter prediction models 

(WDPPMS)
Based on the KS test, the diameter distributions of 17 
major tree species in the forest region of Northeast China 
could be well fitted by the two-parameter Weibull func-
tions predicted by the MLE method, especially for the 
white birch (B. platyphylla Suk.), basswood (T. amuren-
sis Rupr.), black birch (B. davurica Pall.), mono maple (A. 
mono Maxim.), elm (U. pumila L.), walnut (J. mandshu-
rica Maxim.), Korean pine (P. koraiensis Sieb. et Zucc.), 
ribbed birch (B. costata Trautv.), and fir (A. nephrolepis 
(Trautv.) Maxim.) (Table 1; agreement > 90%).

The calculated error indices revealed that the diameter 
distributions by species in each plot were well-fitted, with 
the mean error index value ranging from 0.24 to 0.48 and 
standard deviation of the error index ranging from 0.09 
to 0.2. When the number of trees in each diameter class 
of all plots as a whole by species is summed to calculate 
the error index, the diameter distributions of all species 
were well represented with a lower value of error index 
(0.1–0.38) (Table 2).

The accuracy assessment of WDPPMs by LOOCV 
demonstrated that the scale parameter had a strong cor-
relation with the arithmetic mean DBH for all 17 tree spe-
cies, with high R2 (close to 1) and low RMSE (0.06–0.52) 
(Table  3). Although the relationship between the shape 
parameter and arithmetic mean DBH of each tree species 
was relatively weak (low R2 and large RMSE), the shape 
parameter prediction models for all species passed the 
significance test (P < 0.05), with bias = 0 (Table 3).



Page 9 of 20Fu et al. Annals of Forest Science           (2022) 79:42 	

3.2 � Map of stand mean DBH
The average value of the stand mean DBH over the 
forest region of Northeast China was 13.22 cm. The 
predicted stand mean DBH of the severely burned 

area in 1987 was the lowest, with an average value of 
8.86 cm (Fig. 3). Subregion CBM, especially the CBM 
Nature Reserve, had the highest prediction of stand 
mean DBH. In fact, the average stand mean DBH of 

Table 1  Kolmogorov-Smirnov (KS) test (P > 0.05) of the DBH distribution based on the two-parameter Weibull function on 17 tree 
species in the forest region of Northeast China

Agreement was defined as the percentage of samples that passed the KS test (P > 0.05)

Species Number of samples passing the 
KS test

Total number of samples Agreement (%)

White birch (B. platyphylla Suk.) 306 329 93.01

Larch (L. gmelinii (Rupr.) Kuzen) 270 319 84.64

Mongolian oak (Q. mongolica Fisch. ex Ledeb.) 91 112 81.25

Aspen (P. davidiana Dode) 94 106 88.68

Basswood (T. amurensis Rupr.) 160 167 95.81

Black birch (B. davurica Pall.) 30 32 93.75

Scotch pine (P. sylvestris var. mongolica Litv.) 61 73 83.56

Mono maple (A. mono Maxim.) 112 116 96.55

Elm (U. pumila L.) 97 102 95.10

Walnut (J. mandshurica Maxim.) 52 55 94.55

Spruce (P. koraiensis Nakai) 95 112 84.82

Korean pine (P. koraiensis Sieb.et Zucc.) 103 110 93.64

Ash (F. mandschurica Rupr.) 54 60 90.00

Ribbed birch (B. costata Trautv.) 81 85 95.29

Fir (A. nephrolepis (Trautv.) Maxim.) 112 115 97.39

Amur corktree (P. amurense Rupr.) 60 68 88.24

Willow (C. arbutifolia (Pall.) A. Skv.) 25 30 83.33

Table 2  Error index of the DBH Weibull distribution for 17 tree species in all plots

Error index of summing all plots is calculated by combining all plots as a whole

Species Mean value of 
error index

Minimum value 
of error index

Maximum value 
of error index

Standard deviation 
of error index

Error index of 
summing all 
plots

White birch (B. platyphylla Suk.) 0.31 0.11 0.75 0.14 0.19

Larch (L. gmelinii (Rupr.) Kuzen) 0.34 0.07 0.80 0.17 0.20

Mongolian oak (Q. mongolica Fisch. ex Ledeb.) 0.34 0.15 0.52 0.09 0.14

Aspen (P. davidiana Dode) 0.24 0.08 0.67 0.12 0.10

Basswood (T. amurensis Rupr.) 0.37 0.13 0.86 0.17 0.20

Black birch (B. davurica Pall.) 0.42 0.14 0.90 0.18 0.13

Scotch pine (P. sylvestris var. mongolica Litv.) 0.32 0.13 0.86 0.14 0.24

Mono maple (A. mono Maxim.) 0.46 0.17 0.92 0.12 0.38

Elm (U. pumila L.) 0.42 0.12 0.78 0.12 0.19

Walnut (J. mandshurica Maxim.) 0.45 0.11 0.89 0.17 0.19

Spruce (P. koraiensis Nakai) 0.30 0.13 0.60 0.10 0.23

Korean pine (P. koraiensis Sieb.et Zucc.) 0.36 0.12 0.92 0.18 0.16

Ash (F. mandschurica Rupr.) 0.43 0.17 0.72 0.13 0.27

Ribbed birch (B. costata Trautv.) 0.43 0.15 0.83 0.20 0.20

Fir (A. nephrolepis (Trautv.) Maxim.) 0.43 0.14 0.86 0.17 0.18

Amur corktree (P. amurense Rupr.) 0.48 0.19 0.71 0.13 0.28

Willow (C. arbutifolia (Pall.) A. Skv.) 0.44 0.22 0.68 0.12 0.32
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subregion CBM was 15.20 cm. The predicted stand 
mean DBH of the other two major forest regions (sub-
region LKM and GKM) was lower than that of subre-
gion CBM, with an average value of 12.67 cm and 12.25 
cm, respectively.

The accuracy of the predicted stand mean DBH 
improved substantially from the stand scale to the 
ecotype scale, the R2 increased from 0.56 to 0.88, the 
RMSE decreased from 3.33 to 1.08 cm, and the bias 
decreased from 0.13 cm to 0.01 cm (Fig. 4a, c). Although 
the KS distance (D = 0.09) was the same at the ecotype 
and the stand scale, a higher P value (0.94 vs. 0) for KS 
distance at the ecotype scale revealed that the predicted 

and observed stand mean DBH ECDFs became more 
similar (Fig. 4b, d).

3.3 � Prediction of the tree lists
The predicted wall-to-wall tree lists revealed the DBH dis-
tributions of the 17 major tree species in the forest region 
of Northeast China (Fig.  5). The predicted DBH of most 
tree species was concentrated in the range of 6–38 cm, 
except for spruce (P. koraiensis Nakai), ash (F. mandschurica 
Rupr.), and Amur corktree (P. amurense Rupr.), which was 
distributed at a DBH greater than 40 cm. The DBH distri-
butions of aspen (P. davidiana Dode), Scotch pine (P. sylves-
tris var. mongolica Litv.), spruce (P. koraiensis Nakai), ash (F. 

Table 3  Equations of shape parameter (b) and scale parameter (c) of Weibull distribution based on arithmetic mean DBH (d, unit: cm) 
for 17 tree species and accuracy assessment using LOOCV

Species Equations R2 RMSE Bias P value

White birch b =  − 0.182d + 5.078 0.26 0.76 0.00 0.00

(B. platyphylla Suk.) c = 1.154d − 0.347 1.00 0.16 0.00 0.00

Larch b = 0.168d + 1.623 0.23 0.81 0.00 0.00

(L. gmelinii (Rupr.) Kuzen) c = 1.068d − 0.509 1.00 0.20 0.00 0.00

Mongolian oak b = 0.068d + 1.245 0.18 1.11 0.00 0.05

(Q. mongolica Fisch. ex Ledeb.) c = 1.141d − 0.212 1.00 0.52 0.00 0.00

Aspen b =  − 1.169d + 4.960 0.34 0.49 0.00 0.00

(P. davidiana Dode) c = 1.154d − 0.359 1.00 0.06 0.00 0.00

Basswood b = 0.101d + 1.230 0.12 1.14 0.00 0.00

(T. amurensis Rupr.) c = 1.091d + 0.445 1.00 0.27 0.00 0.00

Black birch b = 0.281d + 0.231 0.24 1.56 0.00 0.01

(B. davurica Pall.) c = 1.039d + 0.896 0.99 0.33 0.00 0.00

Scotch pine b = 0.228d + 0.089 0.21 0.97 0.00 0.01

(P. sylvestris var. mongolica Litv.) c = 1.081d + 0.513 0.99 0.19 0.00 0.00

Mono maple b =  − 0.236d + 8.473 0.18 1.83 0.00 0.00

(A. mono Maxim.) c = 1.142d − 0.659 0.99 0.35 0.00 0.00

Elm b = 0.131d + 0.882 0.19 0.92 0.00 0.00

(U. pumila L.) c = 1.082d + 0.614 1.00 0.22 0.00 0.00

Walnut b = 0.163d + 0.732 0.28 1.45 0.00 0.00

(J. mandshurica Maxim.) c = 1.064d + 0.816 1.00 0.41 0.00 0.00

Spruce b =  − 0.210d + 4.703 0.29 0.57 0.00 0.00

(P. koraiensis Nakai) c = 1.165d − 0.357 1.00 0.08 0.00 0.00

Korean pine b = 0.122d + 1.578 0.33 1.53 0.00 0.00

(P. koraiensis Sieb.et Zucc.) c = 1.068d + 0.628 1.00 0.46 0.00 0.00

Ash b =  − 0.108d + 3.489 0.16 0.59 0.00 0.00

(F. mandschurica Rupr.) c = 1.122d + 0.067 1.00 0.13 0.00 0.00

Ribbed birch b = 0.251d − 0.135 0.49 1.66 0.00 0.00

(B. costata Trautv.) c = 1.038d + 1.061 1.00 0.39 0.00 0.00

Fir b = 0.097d + 1.515 0.13 1.34 0.00 0.00

(A. nephrolepis (Trautv.) Maxim.) c = 1.087d + 0.460 1.00 0.33 0.00 0.00

Amur corktree b =  − 0.170d + 4.351 0.16 0.80 0.00 0.00

(P. amurense Rupr.) c = 1.134d − 0.063 1.00 0.12 0.00 0.00

Willow b = 0.156d + 1.0219 0.16 0.77 0.00 0.05

(C. arbutifolia (Pall.) A. Skv.) c = 1.095d + 0.329 0.99 0.17 0.00 0.00
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mandschurica Rupr.), Amur corktree (P. amurense Rupr.), 
and willow (C. arbutifolia (Pall.) generally showed a reverse 
J-shape, and the density of the above tree species was the 
highest at a DBH of 6 cm. The DBH of white birch (B. platy-
phylla Suk.), larch (L. gmelinii (Rupr.) Kuzen), Mongolian 
oak (Q. mongolica Fisch. ex Ledeb.), basswood (T. amuren-
sis Rupr.), black birch (B. davurica Pall.), mono maple (A. 
mono Maxim.), elm (U. pumila L.), walnut (J. mandshurica 
Maxim.), Korean pine (P. koraiensis Sieb. et Zucc.), ribbed 
birch (B. costata Trautv.), and fir (A. nephrolepis (Trautv.) 
Maxim.) displayed a right-skewed unimodal distribution, 
and the tree density of these tree species reached its peak at 
a DBH of 12, 14, or 16 cm.

The predicted wall-to-wall tree lists in 2000 had a 
comparable accuracy to the predicted tree lists of 641 
plots from 2009 to 2013 (Table 2, Figs. 6 and 7), with a 
mean value for the error index of DBH distribution of 

each species between 0.24 and 0.58 (Fig.  6). When all 
plots were combined as a whole, the error index of the 
DBH distribution of each tree species was lower than 
the mean value of the error index calculated based on 
all plots, indicating improved accuracy of the predicted 
tree lists for most species (Fig. 7). Except for aspen (P. 
davidiana Dode), walnut (J. mandshurica Maxim.), and 
Amur corktree (P. amurense Rupr.), the predicted den-
sity of the other tree species in the smallest DBH class 
(6 cm) was lower than the observed density. Notably, 
the predicted and observed DBH distribution curves 
for black birch (B. davurica Pall.) was the most consist-
ent, showing a left-skewed unimodal distribution, and 
the error index was the smallest (0.13). Therefore, the 
prediction accuracy of the DBH distribution of black 
birch (B. davurica Pall.) was deemed to be the highest 
(Fig. 7).

Fig. 3  Map (250-m spatial resolution) of the predicted stand mean DBH in the forest region of Northeast China for the year 2000
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3.4 � Maps of species‑specific tree density from tree lists
For the maps of species-specific tree density in the for-
est region of Northeast China in 2000 (Fig. 8), pixels with 
a tree density greater than 0 indicated the location of tree 
species growth. The total tree density of the 17 species 
mapped by summing the species-level tree density within 
each pixel mainly ranged from 700 trees ha-1 to 3000 trees 
ha-1, and the average total tree density for the forest region 
of Northeast China was approximately 1462 trees ha-1 
(Fig. 8). Among the three major forest distribution areas of 
Northeast China (subregions GKM, LKM, and CBM), the 
average total tree density in subregion LKM (1510 trees 
ha-1) was higher than that in subregions GKM (1506 trees 
ha-1) and CM (1393 trees ha-1). In the northeastern part of 
ecoregion SJP, owing to the large number of newly planted 
Scotch pine (P. sylvestris var. mongolica Litv.) forests, the 
total tree density in this region was high (Fig. 8).

By counting the mean value of pixels with tree density 
greater than 0 for each tree species, the average tree den-
sity of larch (L. gmelinii (Rupr.) Kuzen) (1009 trees ha-1) 
in its existing area was found to be the highest. In terms 
of spatial distribution, the tree density of larch (L. gmeli-
nii (Rupr.) Kuzen) in each pixel was significantly higher 
than that of the other tree species (Fig.  8). White birch 
(B. platyphylla Suk.) had an opposing trend to larch 
(L. gmelinii (Rupr.) Kuzen) in the spatial distribution of 
tree density, especially in the severely burned area of the 
GKM subregion. Although the distribution range of wil-
low (C. arbutifolia (Pall.) A. Skv.) was the smallest among 
the 17 tree species, with a high average tree density (766 
trees ha-1) in its existing area, second only to that of larch 
(L. gmelinii (Rupr.) Kuzen), indicating that the distribu-
tion of willow (C. arbutifolia (Pall.) A. Skv.) was relatively 
dense. The tree density of Scotch pine (P. sylvestris var. 

Fig. 4  a Density scatterplot between the observed and predicted stand mean DBH at the stand scale, b cumulative distribution functions of the 
observed and predicted stand mean DBH at the stand scale, c density scatterplot between the observed and predicted stand mean DBH at the 
ecotype scale, and d cumulative distribution functions of the observed and predicted stand mean DBH at the ecotype scale. The dotted line in a 
and c is the 1:1 line and the solid line in a and c is the regression line of geometric mean function
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Fig. 5  Predicted tree lists by species over the forest region of Northeast China in 2000
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mongolica Litv.) in the eastern part of the LKM subregion 
and the northeastern part of the SJP subregion was sig-
nificantly higher than that in the other regions. The tree 
density of spruce (P. koraiensis Nakai) and fir (A. neph-
rolepis (Trautv.) Maxim.) in subregion LKM was higher 
than that in subregion CM. For other tree species, the 
predicted wall-to-wall tree density for most pixels was 
less than 700 trees ha-1. For the Mongolian oak (Q. mon-
golica Fisch. ex Ledeb.), black birch (B. davurica Pall.), 
mono maple (A. mono Maxim.), walnut (J. mandshurica 
Maxim.), ash (F. mandschurica Rupr.), and ribbed birch 
(B. costata Trautv.), the predicted wall-to-wall tree den-
sity for most pixels was less than 300 trees ha-1.

4 � Discussion
4.1 � Selection of the coupled framework for predicting 

wall‑to‑wall tree lists
With the increasing need for detailed forest attributes 
(e.g., tree lists) to answer regional questions, including 
understanding the current structure and succession sta-
tus of a forest, formulating targeted forest management 
strategies for different forest regions, or predicting tree 
species distribution shifts under climate change (Fer-
raz et  al. 2020; Wang et  al. 2019), the development of 
efficient and accurate methods to obtain such regional 
tree list information has attracted significant research 
interest. Although previous studies have applied both 
parametric diameter distribution modeling (e.g., Weibull 
function) and nonparametric imputation (e.g., kNN 

model) to predict tree lists (Packalén and Maltamo 2008; 
Schütz and Rosset 2020; Shang et al. 2017), the integra-
tion of these two methods proposed in our study is novel 
for generating wall-to-wall tree lists over large areas with 
limited forest inventory data.

The Weibull function, especially the two-parameter 
Weibull function, is extensively used to describe the 
diameter distributions of single- and mixed-species 
stands (Hao et  al. 2022; Liu et  al. 2014; Schmidt et  al. 
2020; Zhang et  al. 2018b). Although Liu et  al. (2014) 
found that a finite mixture model (FMM) of Weibull 
functions was more flexible for describing irregular and 
highly skewed diameter distributions for the whole plot 
in the mixed-species forest stands of the Greater Khin-
gan Mountains in Northeast China than a single Weibull 
function to fit the whole plot only, a single Weibull func-
tion to fit each species component separately was more 
accurate than the FMM. FMM is often difficult to apply 
to large regions owing to the many unknown parameters 
that require good fitting (Zasada and Cieszewski 2005).

A prerequisite for applying a single Weibull function 
to fit each species component separately to large regions 
is the available information on wall-to-wall species com-
position, which is difficult to obtain through traditional 
forest resource inventory alone (Liu et al. 2014). Our cou-
pled framework can use a Weibull function to fit each 
species component separately and provide information 
regarding the species composition across large regions 
using kNN imputation models based on MODIS data. 

Fig. 6  Error index calculated based on the predicted wall-to-wall and transformed inventory tree lists in 2000 by species for each plot. The blue 
diamond represents the mean value of the error index calculated based on all plots
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Fig. 7  DBH distribution frequency by species of predicted wall-to-wall tree lists versus observed tree lists in 2000 based on the transformed sample 
plot data. The error index was calculated by combining all transformed plots as a whole
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MODIS data have broader spatial coverage and higher 
temporal resolution than other high spatial resolution 
multispectral satellite imagery (e.g., Landsat), provide 
abundant and near real-time spectral information, and 
have been widely used to map spatially explicit forest 
attributes over large regions (Beaudoin et al. 2018; Hayes 
et al. 2008; Zhang et al. 2018a; Zhang et al. 2013). There-
fore, our coupled framework is feasible and effective for 
predicting species-specific diameter distributions and 
tree density on a regional scale.

4.2 � Accuracy and reliability of the coupled framework’s 
predictions

Accuracy is an important issue in regional forest attrib-
utes predictions. The accuracy of the wall-to-wall tree 
lists predicted in this study was mainly determined by 
the WDPPMS and kNN imputation models. For a more 
general assessment of our coupled framework, we com-
pared the accuracies of the WDPPMS and kNN mod-
els with those of similar studies. The WDPPMS used 
in our study produced an accuracy comparable to that 

of previous studies. For example, the scale param-
eter was usually strongly correlated with the stand 
attributes (Zhang et  al. 2018b), consistent with previ-
ous studies, and the prediction accuracy of the scale 
parameter of the 17 tree species in this study was bet-
ter than the results (R2 = 0.96–0.99) obtained in the 
natural stands of the Crimean Juniper in the south-
ern and southwestern (Mediterranean) region of Tur-
key (Diamantopoulou et  al. 2015). Furthermore, our 
studies led to a conclusion similar to that previously 
reported by Hao et  al. (2022), Wang et  al. (2006), and 
Zhang et al. (2018b), who found that the shape param-
eter is often more difficult to accurately predict than 
the scale parameter. This finding might be due to the 
remarkable complexity of the shape parameter in the 
mixture distribution to allow characterization by the 
stand mean DBH (Wang et al. 2006). The average error 
index (0.32–0.34) of the predicted diameter distribu-
tion by tree species in a typical managed boreal forest 
area of Finland (Packalén and Maltamo 2008) was close 
to that obtained herein for the dominant tree species 

Fig. 8  Maps of total and species-level tree density in the forest region of Northeast China in 2000
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in Northeast China. The above comparisons indicate 
that the WDPPMS developed in this study can be used 
at least as accurately as previous studies to predict spe-
cies-specific diameter distributions.

The accuracy assessment at different scales for our 
predicted stand attributes (e.g., species-level biomass 
and stand mean DBH) could provide useful information 
for different applications. For example, stand projection 
models (growth and yield models) require detailed stand 
attributes at the stand scale to set the initial conditions 
(Scolforo et al. 2019), whereas forest ecosystem process 
research may require forest attributes at the ecotype 
scale (Dijak et  al. 2017). In this study, the stand mean 
DBH predicted using the kNN imputation model over 
Northeast China at the stand scale had a higher accu-
racy than that of similar studies conducted in Chinese 
boreal forests (Zhang et  al. 2018b). Owing to the rela-
tively homogeneous temperature, humidity, topography, 
forest type, and species composition of each ecotype, the 
prediction accuracy of stand mean DBH at the ecotype 
scale was significantly improved, indicating that the map 
of stand mean DBH generated in this study is more suit-
able for application to forest ecosystem models (e.g., 
LINKAGES) operated at the ecotype scale. The areas 
with lower predictions of stand mean DBH in our study 
were consistent with the burned areas in 1987, further 
indicating that our predicted stand attributes were real-
istic and captured the significant disturbance processes. 
The predicted mean values of total and species-level tree 
density derived from the tree lists over the Greater Khin-
gan Mountains, Lesser Khingan Mountains, and Chang-
bai Mountains were similar to those of previous studies 
conducted in Northeast China (Chen et  al. 2003; Dai 
et al. 2013; Liu et al. 2020), suggesting that our predicted 
tree lists were reasonable.

4.3 � Ecological implications of the prediction results
The DBH distribution of tree species exhibits variable pat-
terns owing to site quality, regional climate, and distur-
bances (Chhin et  al. 2008; Lin et  al. 2016; Rodrigo et  al. 
2022). Generally, consistent with the results of previous 
studies fitting the similar DBH distribution of the corre-
sponding tree species in Northeast China (Hao et al. 2022; 
Liu et al. 2014; Xu and Jin 2012), the overall DBH distribu-
tion of most tree species predicted in this study displayed a 
right-skewed unimodal pattern (Fig. 5), suggesting that at 
the regional scale, a continuous regeneration and relatively 
stable community structure occurred in most tree species 
in Northeast China (Fang et al. 2012). Further, the regional 
DBH distribution of a few tree species, such as aspen (P. 
davidiana Dode), Scotch pine (P. sylvestris var. mongolica 
Litv.), spruce (P. koraiensis Nakai), ash (F. mandschurica 

Rupr.), Amur corktree (P. amurense Rupr.), and willow (C. 
arbutifolia (Pall.), which were fitted in this study, followed a 
reverse J-shape (Fig. 5), which is a general pattern observed 
in virgin or near-natural forests. Such findings indicate 
that the stands of the above tree species were mature and 
reached an equilibrium state in Northeast China (Král et al. 
2010; Westphal et al. 2006). Our predicted species-specific 
diameter distributions could provide a reference for species 
conservation and strategic forest management in the entire 
distribution range of tree species.

Our spatial predictions of tree density by species 
extracted from tree lists can capture the dominant eco-
logical patterns and processes. In particular, for the high-
intensity burned areas of the Greater Khingan Mountains 
in 1987, the predicted tree density of white birch (B. 
platyphylla Suk.) was higher than that of larch (L. gmelinii 
(Rupr.) Kuzen) in 2000, which was lower than that of larch 
(L. gmelinii (Rupr.) Kuzen) in low-intensity burned areas 
(Fig. 8). This spatial pattern was attributed to the strong 
seed dispersal and establishment abilities of white birch 
(L. gmelinii (Rupr.) Kuzen) and the strong fire resistance 
of larch (L. gmelinii (Rupr.) Kuzen) (Chang et  al. 2007; 
Wang et al. 2017). Therefore, the high-resolution maps of 
total and species-level tree density for the entire North-
east China generated in our study could reveal the tree 
species composition and regeneration patterns of forest 
regions affected by large disturbance events (Crowther 
et al. 2015). These maps would also be useful for modeling 
broad-scale biological and biogeochemical processes (Slik 
et al. 2010).

4.4 � Limitations of the current study and future directions
In this study, we proposed a coupled framework for using 
MODIS data as predictor variables to impute wall-to-wall 
stand attributes and predict species-specific diameter dis-
tributions using the unimodal Weibull model for continu-
ous forest regions. This framework provides an innovative 
means of generating detailed wall-to-wall tree lists across 
large areas based on limited field data. However, the cou-
pled framework of the current study has limitations, and 
some potential improvements must be addressed in future 
work. For instance, the limited and unevenly distrib-
uted forest inventory data over the study area may intro-
duce error sources to forest stand attribute predictions. 
Advances in LiDAR techniques have demonstrated great 
potential for providing accurate estimates of tree metrics, 
such as tree height (Su et al. 2016). Moreover, as LiDAR 
footprints are distributed evenly and widely (Popescu 
et  al. 2011), the derived tree-level variables from these 
footprints can be input to the kNN imputation models to 
compensate for the lack of field data. Thus, future work 
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should consider the synergy of LiDAR and MODIS data to 
develop links between inherent forest structural attributes 
and their spectral information to enhance the reliability of 
predicting wall-to-wall stand attributes.

Owing to the lack of accurate conversions between stand 
mean DBH and mean arithmetic DBH of major tree spe-
cies in Northeast China, the stand mean DBH was used 
instead of mean arithmetic DBH by species to predict 
pixel-level Weibull distribution parameters. This replace-
ment will lead to great uncertainties when applied to 
forests with complex stand structures, especially for une-
ven-aged natural mixed forests. Some studies revealed that 
a unimodal pattern may not adequately describe the diam-
eter distribution modality of irregular, uneven-aged stands 
(Hao et  al. 2022; Thomas et  al. 2008; Wang et  al. 2006). 
Therefore, in future work, on the premise of collecting suf-
ficient forest ground inventory and LiDAR data, the accu-
rate conversion relationships between stand mean DBH 
and mean arithmetic DBH of each species must first be 
established. Thereafter, an appropriate modeling approach 
must be applied to fit the multimodal diameter distribu-
tions of mixed species or uneven-aged forest stands at the 
regional scale.

5 � Conclusion
This study revealed the appropriateness of a novel frame-
work using limited forest inventory data to predict wall-
to-wall tree lists across large regions by integrating the 
two-parameter Weibull function and kNN imputation 
method. The Weibull function displayed a strong abil-
ity to describe the diameter distribution of tree species 
in Northeast China. The Weibull distribution parameter 
prediction models (WDPPMS) of 17 species for predict-
ing the parameters of Weibull functions, and the random 
forest-based kNN model for imputing stand mean DBH 
built produced considerable or higher accuracy than those 
of previous studies. Generally, the fitted DBH distribution 
of 17 tree species across Northeast China in 2000 dis-
played a right-skewed unimodal or reverse J-shaped pat-
tern, suggesting that most tree species exist in a state of 
continuous regeneration and relatively stable structure at 
the regional scale. Additionally, the total and species-level 
tree density maps derived from the tree lists captured 
the forest regions influenced by fire disturbance and are 
prerequisites for ecological modeling and assessment of 
the entirety of Northeast China. However, this study pre-
sented regional tree lists across Northeast China for only 
1 year (2000). To better analyze the natural succession of 
forests and assess the influence of disturbances and cli-
mate change on tree species composition, the temporal 
and spatial variation of tree lists over Northeast China 
should be further studied.
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