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Abstract 

Key message The diameter growth of Dahurian larch (Larix gmelini Rupr.) and white birch (Betula platyphylla 
Suk.) species in secondary forest of Northeast China was not only influenced by biological factors such as tree size 
and stand characteristics, but also significantly affected by topographic and climatic factors such as temperature 
and precipitation. It is necessary to consider the abiotic factors in simulating the diameter growth.

Context Climate change, such as global temperature rise, increased frequency of extreme weather events, and rising 
sea levels, has put forest ecosystems in an unstable state and has an impact on species composition, growth harvest, 
productivity and other functions of forests. And this impact varies in climate scenarios, regions and forest types.

Aims To gain a comprehensive understanding of the adaptation for key species to their environment in secondary 
forests in Northeast China, the diameter growth responses of Dahurian larch and white birch to biotic and abiotic fac-
tors were simulated to assess the effects of climate on diameter growth.

Methods China’s National Forest Continuous Inventory (NFCI) data from 2005 to 2015 were used to develop lin-
ear mixed-effects diameter growth models with plot-level random effects, and leave-one-out cross-validation 
was applied to evaluate the developed models. At the beginning of modeling, correlation analysis and best-subset 
regression were used to analyze the correlation between the diameter increment and the biotic and abiotic factors.

Results (i) Sorting the categories of predictors in descending order based on the relative importance of the signifi-
cant predictors, diameter growth of Dahurian larch was affected by competition, tree size, topographic conditions, 
stand attributes, diversity index, and climate factors, while the white birch species was affected by competition, tree 
size, stand attributes, climate factors, diversity index, and topographic conditions; (ii) the plot-level mixed-effects 
model, which achieved better fit and prediction performance than did basic linear models of individual-tree diam-
eter growth in the cases of prediction calibration, was preferable for modeling individual-tree diameter growth; (iii) 
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1 Introduction
A clear understanding of tree diameter growth not only 
helps to inform decision making in forest adaptation 
management but also helps to assess tree and stand car-
bon sinks. At present, individual-tree diameter growth 
models are effective tools for modeling growth and yield 
(Zhao et  al. 2004; Adame et  al. 2008; Cao 2022), and 
these models can provide detailed information about 
individual trees in a forest stand, support the simulation 
of different forest structures, and provide flexible out-
put to evaluate a broad range of stand treatments with a 
higher prediction resolution than that of stand-level and 
size class-level models (Peng 2000; Cao 2014). However, 
the traditional growth model includes only some biologi-
cal factors, such as tree size and stand conditions, which 
cannot predict growth under changing environmental 
conditions. The growth of trees is affected by a variety of 
biotic and abiotic factors (Toledo et al. 2011; Ford et al. 
2017). Therefore, only a comprehensive assessment of 
the impact of various factors can accurately quantify the 
growth of trees, especially in the context of global cli-
mate change, and it is particularly important to develop 
growth models including biotic and abiotic factors.

Various categories of traditional variables, which are 
often called biotic variables and further classified as 
individual-level, stand-level, and competition-level vari-
ables, have been added to models (Adame et  al. 2008; 
Pretzsch and Schütze 2009; Zhang et  al. 2017). Individ-
ual-level variables have been widely used as substitutes 
for tree size or tree vitality. Stand-level variables have 
been included to reflect the differences between differ-
ent stands. Competition-level variables that are related to 
stand density can be divided into distance-independent 
(nonspatial) and distance-dependent (spatial) variables 
(Tomé and Burkhart 1989). Distance-independent vari-
ables are more commonly used because they are easier 
to incorporate into models and are unlikely to provide 
a prediction accuracy that is much different from that 
obtained using distance-dependent variables (Dong et al. 
2021). An increasing number of studies have revealed 
that traditional model variables have limitations when 
dealing with different forest regions and climatic regions, 
and it has been proposed that multiple variables related 

to environmental factors, such as site-growth variables, 
i.e., diversity, topography and climate variables, should be 
added to individual-tree diameter growth models (Rosen-
berg et al. 1983; Laubhann et al. 2009; Haase et al. 2015). 
Diversity reflects the mixed proportion of tree species 
or the richness of species, and diversity is one key differ-
ence between pure forests and mixed forests (Yang et al. 
2009; del Río et al. 2019). It is also necessary to consider 
the abiotic factors related to tree growth. For example, 
aspect, slope, and elevation are recognized as important 
topographic variables that affect the amount and daily 
cycle of solar radiation received at different times of the 
year (Stage 1976; Fekedulegn et  al. 2003). Climate vari-
ables linked to temperature (dormant and growing sea-
son), precipitation patterns, and drought intensity, which 
modify species growth patterns and result in productiv-
ity shifts among species, are critical to predicting tree- 
and stand-level growth in the context of climate change 
(Condés and García-Robredo 2012; Begović et  al. 2020; 
Aldea et  al. 2021). Thus, forest growth models used to 
inform adaptive management strategies should incorpo-
rate the sensitivity of forest dynamics to climate change 
(Pukkala and Kellomaki 2012; Zhang et al. 2016; Yasmeen 
et al. 2019).

Ordinary least squares (OLS) was the first type of 
model used to model individual-tree diameter growth 
(Newnham and Smith 1964; Hasenauer et  al. 1998; 
Kiernan et  al. 2008). However, this approach has sig-
nificant deficiencies when dealing with stands with 
multiple tree species and age groups or with hierar-
chically structured data (Kuehne et  al. 2016). Linear 
mixed-effects models have been widely used to analyze 
repeated sampling survey data with a nested structure 
(Lhotka and  Loewenstein 2011; de-Miguel et  al. 2013; 
Sanchez-Gonzalez et al. 2021). The linear mixed-effects 
model is composed of fixed- and random-effect param-
eters, and the variance-covariance structure allows for 
the efficient analysis of hierarchically structured data 
and increases the prediction accuracy of the model 
when the measured trees or stands are grouped into 
plots or regions (Ugrinowitsch et  al. 2004). In addi-
tion, linear mixed-effects models may be calibrated to 
improve predictive ability if the values of the random 

the prediction accuracy of the mixed-effects model increased gradually with increasing size of calibration sample, 
and the best sampling strategy was the use of nine random trees to calibrate and make predictions with the mixed-
effects model for the larch and birch species; (iv) Dahurian larch was dominant in terms of interspecific competition, 
and the growth of this species was enhanced when it was grown with the birch.

Conclusion In addition to biotic factors such as tree size and stand characteristics, the impact of climate 
on the growth of Dahurian larch and white birch should be considered in future management policies.

Keywords Individual-tree diameter growth, Mixed-effects models, Climate-sensitive, Secondary forest
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parameters are predicted based on a subsample of trees 
measured in particular stands (Miao et al. 2021). How-
ever, the prediction accuracy may be lower than the 
same model fitted by OLS if samples were unavailable 
for random effects calibration (Xie et al. 2021).

Boreal forests are widely distributed in the east-
ern Daxing’an Mountains in Northeast China. These 
boreal forests play a crucial role in the Chinese 
national carbon budget and climatic system. The east-
ern Daxing’an Mountains have provided and continue 
to provide wood resources for the development of 
China (Ho 2006). From the 1960s to 2000s, the boreal 
forests in these mountains were overharvested in the 
absence of appropriate scientific management; thus, 
many overharvested secondary forests now exist in 
this region, and their growth is slow due to poor site 
conditions and frequent disturbances, including fires 
and snowstorm disasters (Guo et al. 2017; Chave et al. 
2020; Zhu and Lo 2022). In 1998, the natural forest 
protection program (NFPP) was implemented in the 
eastern Daxing’an Mountains in Northeast China to 
control deforestation and forest degradation and pro-
tect upstream forest ecosystems and watersheds. After 
more than 20 years of protection, tree growth models 
that are suitable for this region are needed to estimate 
the developmental trends of future stands and the 
potential productivity and supply capacity of the land. 
Dahurian larch (Larix gmelinii Rupr.) and white birch 
(Betula platyphylla Suk.) are the two dominant species 
in the natural forests of the eastern Daxing’an Moun-
tains (State Forestry and Grassland Administration 
2019). Unfortunately, the forest resource inventory 
data in this region have not been fully developed, and 
no suitable growth models have been available to date 
for Dahurian larch and white birch in the Daxing’an 
Mountains.

Therefore, this study aimed to analyze and explore the 
diameter growth responses to biotic and abiotic factors 
for Dahurian larch and white birch in secondary forests 
of Northeast China. The detailed objectives were to (1) 
develop individual-tree mixed-effects models of diam-
eter growth for Dahurian larch and white birch in a 
boreal overharvested secondary forest across the east-
ern Daxing’an Mountains in Northeast China; (2) eval-
uate the performances of a linear mixed-effects model 
and a linear model, compare them with a leave-one-out 
cross-validation approach and determine an appropri-
ate sample size that considers both sampling cost and 
predictive accuracy; and (3) analyze the species-spe-
cific diameter growth response to different conditions, 
including different species compositions and climate 
conditions, for a better understanding of the growth 
patterns of the two species.

2  Materials and methods
2.1  Study area
The study area is located in the eastern Daxing’an Moun-
tains (from 121° 12′ E to 127° 00′ E and 50° 10′ N to 53° 33′ 
N) (Fig.  1A). The elevation of the study area ranges from 
190 to 1190 m above sea level. This area has a cold temper-
ate continental monsoon climate, with the monthly mean 
annual temperature and precipitation shown in Fig. 1B and 
C (Zhao et al. 2016). More than 64% of the precipitation in 
this area falls as rain, primarily in summer (July–August). 
Snow typically starts in October and melts in April, last-
ing for an average of 6  months. The frost-free period is 
85–105  days, usually spanning from May to September. 
The spring thaw period lasts for approximately 70  days, 
starting when the daily maximum air temperature exceeds 
0 °C and ending with the soil thawing to a depth of 20 cm 
(Bai et al. 2019). The soils are mostly podzol according to 
the soil groups in the classification system of the Food and 
Agriculture Organization (Sposito 2023). The forest types 
in the eastern Daxing’an Mountains are mainly divided as 
follows: white birch forest, larch forest, larch-birch forest, 
deciduous broadleaf mixed forest, coniferous and broad-
leaf mixed forest, and coniferous mixed forest. Among 
these forest types, white birch forest, larch forest and larch-
birch forest have the largest proportions of forest area and 
stand volume (State Forestry and Grassland Administration 
2019). The dominant tree species are Dahurian larch and 
white birch; other species include Dahurian poplar (Popu-
lus davidiana Dode.), Mongolian oak (Quercus mongolica), 
and Mongolian pine (Pinus sylvestris var. mongolica).

2.2  Forest inventory data
The data in this study were collected from permanent 
sample plots managed by twelve forest bureaus in Chi-
na’s National Forest Continuous Inventory (NFCI) in the 
eastern Daxing’an Mountains; the numbers of permanent 
sample plots for birch forest, larch forest, and larch-birch 
forest were 168, 212, and 240, respectively. The perma-
nent plots were investigated in 2005–2015 at 5-year 
intervals. The permanent sample plots were located 
throughout the species’ distributions across the eastern 
Daxing’an Mountains; they were established at the inter-
sections of a grid-based network (8 × 8  km) and were 
square, with an area of 600 m2 . The species of all the sam-
ple trees in each plot were identified, and the diameter at 
breast height (DBH) was recorded for each tree when it 
was greater than 5 cm. The mean height of three to five 
medium-sized trees, selected according to the average 
DBH, of each dominant species was taken as the average 
height of the species. The summary information of the 
data used in this study is listed in Table 1, and the abbre-
viations used in the NFCI and the calculation formulas of 
the variables are shown in Table 2.
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2.3  Climate data
To explore the effects of climate on the diameter 
growth of Dahurian larch and white birch, we obtained 
monthly and annual climate data for each plot for the 
entire survey interval (2005–2015) using ClimateAP 
v2.30 software (Wang et al. 2017). ClimateAP is a stan-
dalone MS  Windows® software application used for 
extracting climate data in the Asia–Pacific area, and 
it can provide downscaled gridded (4 × 4 km) monthly 
climate data for both past and future years or periods 
between 1950 and 2100 according to the latitude, lon-
gitude, and elevation of the plots. In our study area, 
the elevation ranged from 190 to 1190 m, the longitude 
ranged from 121° 12′ E to 127° 00′ E, and the latitude 
ranged from 50° 10′ N to 53° 33′ N. Climate downscal-
ing was achieved through a combination of bilinear 
interpolation and dynamic local elevational adjustment 

(Marke et  al. 2011). In this study, two growth season 
variables, twelve seasonal variables, and fifteen annual 
variables were chosen as candidate climate variables 
for model fitting. The input values of the climate vari-
ables were the mean values over each survey interval 
(5 years). The basic information on climate variables is 
listed in Table  3, and the corresponding climate vari-
able names, abbreviations, and their definitions are 
shown in Table 4.

2.4  Model development
2.4.1  Basic model development
The individual-tree diameter growth model is a func-
tion that describes the relationship between diameter 
increase and controlled factors. The general form of the 
basic model is expressed as follows:

Fig. 1 The geographical location of the study area and the plot distribution in the eastern Daxing’an Mountains, China (A); monthly average 
temperature for the climate period (2005–2015), with elevation ranging from 190 to 1190 m, in the Daxing’an Mountains (from 121° 12′ E to 127° 00′ 
E and from 50° 10′ N to 53° 33′ N) (B); monthly average precipitation for the climate period (2005–2015), with elevation ranging from 190 to 1190 m, 
in the Daxing’an Mountains (from 121° 12′ E to 127° 00′ E and 50° 10′ N to 53° 33′ N) (C). The red dots and numbers represent the forest bureaus 
and the number of plots nested in each forest bureau, respectively
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Table 1 Descriptive statistics of the tree- and plot-level variables for larch and birch species in 2005–2015. The definitions of the 
variable abbreviations and the calculation formulas are presented in Table 2

Level Variable Size Mean Minimum Maximum Standard 
deviation

Stand Larch stand

Dg(cm) 212 12.1 5.8 28.2 3.09

G(m2/ha) 15.9 1.6 33.7 7.25

Age 77 20 195 38.04

N(trees/ha) 1465 316 3950 710.43

ALT (m) 651 220 1190 214.83

SL(°) 6 0 28 5.28

ASP(°) 161 0 315 113.62

ALTLCA 0.72 −3.06 2.98 1.96

ALTLTS −4.37 −619.19 21.73 41.77

TAI 0.27 0.08 0.81 0.13

SWI 0.56 0.00 1.32 0.31

SPI 0.33 0.00 0.72 0.19

Hp(m) 13.0 1.7 26.5 3.55

Dgl(cm) 12.6 5.8 28.2 3.04

Gl(m
2/ha) 13.2 1.0 31.7 6.42

GLR(%) 84.21 18.00 100.00 12.26

Nl(trees/ha) 1486 316 3950 724.61

Birch stand

Dg(cm) 168 10.6 5.9 21.6 2.63

G(m2/ha) 14.1 1.3 29.4 5.91

Age 47 8 130 17.53

N(trees/ha) 1669 350 3350 711.50

ALT (m) 601 190 1150 182.03

SL(°) 7 1 26 4.89

ASP(°) 160 0 315 116.44

ALTLCA 1.04 −2.94 2.93 1.77

ALTLTS −24.61 −663.05 21.54 120.48

TAI 0.31 0.09 0.95 0.15

SWI 0.48 0.00 1.36 0.31

SPI 0.28 0.00 0.71 0.19

Hp(m) 12.10 0.80 24.00 3.38

Dgb(cm) 10.51 5.90 21.60 2.64

Gb(m2/ha) 11.6 1.2 23.4 4.72

GBR(%) 85.10 56.00 100.00 10.54

Nb(trees/ha) 1686 350 3350 723.28

Larch-birch stand

Dg(cm) 240 12.0 6.9 21.0 2.25
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Table 1 (continued)

Level Variable Size Mean Minimum Maximum Standard 
deviation

G(m2/ha) 17.9 2.4 30.9 5.67

Age 59 18 167 23.95

N(trees/ha) 1661 316 3383 635.78

ALT (m) 625 235 1180 210.02

SL(°) 7 0 26 5.10

ASP(°) 155 0 315 108.29

ALTLCA 0.54 −3.00 2.96 1.98

ALTLTS −16.66 −663.05 21.37 92.81

TAI 0.31 0.08 0.81 0.14

SWI 0.82 0.04 1.51 0.26

SPI 0.48 0.01 0.75 0.14

Hp(m) 13.0 1.2 23.0 2.81

Dgl(cm) 12.0 6.9 21.0 2.16

Gl(m
2/ha) 8.8 0.5 17.9 3.74

GLR(%) 47.61 4.00 64.00 11.37

Nl(trees/ha) 1390 316 3383 724.61

Dgb(cm) 11.9 6.9 21.0 2.32

Gb(m2/ha) 8.15 0.88 15.64 3.08

GBR(%) 42.14 6.00 93.00 12.78

Nb(trees/ha) 1635 316 3383 651.89

Tree Larch

DBH1(cm) 36,158 11.2 5.0 61.7 6.53

DBHN(cm) 0.11 0.02 0.22 0.05

DBH2(cm) 12.0 5.0 61.7 6.61

BAL(m2/ha) 12.02 0.00 33.41 7.02

BAL1(m2/ha) 7.92 0.00 31.64 5.34

BAL2(m2/ha) 4.10 0.00 23.23 4.20

BALD 5.42 0.00 18.31 3.53

BALD1 3.52 0.00 16.53 2.53

BALD2 1.90 0.00 12.96 2.05

Birch

DBH1(cm) 44,224 10.1 5.0 50.3 4.52

DBHN(cm) 0.12 0.02 0.26 0.04

DBH2(cm) 10.7 5.0 50.4 4.63

BAL(m2/ha) 11.15 0.00 33.45 6.08

BAL1(m2/ha) 6.35 0.00 23.32 4.16

BAL2(m2/ha) 4.81 0.00 31.72 4.50

BALD 4.98 0.00 17.98 2.97

BALD1 2.86 0.00 12.26 2.00

BALD2 2.13 0.00 17.24 2.07
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where yi is the ith observation of response variable, β is 
the coefficients into vector, xi is the predictors of obser-
vation i into vector, εi is the error term. In this study, 
both the increment of diameter and the increment of 
basal area were considered as response variables since 
these two forms have a mathematical relationship and 

(1)yi = x
′

iβ + εi
are convenient for use in forestry (Hökkä and Groot 
1999). And the final form of the response variable was 
determined by evaluating the fitting performance of 
the model that includes the different response variable, 
namely we used the type of response variable for which 
the model fit was better. The alternative predictors 
are generally divided into two types: (1) biotic factors 
(such as tree size, competition effects, stand attributes, 

Table 2 Abbreviations, descriptions and formulas of available variables for individual-tree diameter growth models

Attribute Variable (unit) Description Formula Symbols or explanation

Tree size DBH1(cm) Initial tree diameter in the period d1i d2i is the ith final tree diameter 
in the period, d1i is the ith initial tree 
diameter in the period, and ln is the natural 
logarithm.

DBH2(cm) Final tree diameter in the period d2i

DBHN(cm) Reciprocal of initial tree diameter 1/d1i

DBHL(cm) Initial tree logarithmic diameter ln(d1i)

Stand attributes Dg(cm) Quadratic mean diameter
√

(
∑

d21i)/nj
d1il is the ith initial tree diameter of larch 
in the period, d1ib is the ith initial tree 
diameter of birch in the period, nj 
is the number of measured trees, njl 
is the number of measured trees of larch, 
njb is the number of measured trees 
of birch, h1i is the initial height of tree i  
in the period, nk is the number of meas-
ured trees in plot k (3–5 trees selected 
for measurement according to mean 
diameter), D is the arithmetic mean diam-
eter of trees, and S is the plot area.

Dgl(cm) Quadratic mean diameter of larch
√

(
∑

d2
1il)/njl

Dgb(cm) Quadratic mean diameter of birch
√

(
∑

d2
1ib)/njb

Hp(m) Average height of the dominant species
∑

h1i/nk

Age Age of forest stand -

G(m2/ha) Total species stand basal area 10000
S

(

∑nj
i=1

π
4
d21i

)

LnG(m2/ha) Logarithm of G ln(G)

Gl(m2/ha) Larch species stand basal area 10000
S

nj
i=1

π
4
d2l1i

Gb(m2/ha) Birch species stand basal area 10000
S

(

∑nj
i=1

π
4
d2b1i

)

N(trees/ha) Number of trees per hectare 10000
S

nj

Nl(trees/ha) Number of trees of larch per hectare 10000
S

njl

Nb(trees/ha) Number of trees of birch per hectare 10000
S

njb

Competition effects BAL(m2/ha) Basal area of larger trees for all species 10000
S

(

∑n
i=1

π
4
D2
1q

)

D1q is the initial diameter of a tree 
that is larger than the target tree 
in the period, D1q1 is the initial diameter 
of a tree that is larger than the intraspecific 
target tree in the period, D1q2 is the ini-
tial diameter of a tree that is larger 
than the interspecific target tree 
in the period, and n is the number of trees.

BAL1(m2/ha) Intraspecific basal area of larger trees 10000
S

(

∑n
i=1

π
4
D2
1q1

)

BAL2(m2/ha) Interspecific basal area of larger trees 10000
S

(

∑n
i=1

π
4
D2
1q2

)

BALD Ratio of BAL and d1 BAL/ln(d1 + 1)

BALD1 Ratio of BAL1 and d1 BAL1/ln(d1 + 1)

BALD2 Ratio of BAL2 and d1 BAL2/ln(d1 + 1)

Diversity index SWI Shannon–Wiener index
−
∑m

k=1

n1jk
n1j

ln

(

n1jk
n1j

)

m is the number of species, n1jk is the ini-
tial number of trees for species k in plot 
j  in the period, and n1j is the total initial 
number of trees within plot j  in the period.

SPI Simpson’s index ∑m
k=1

n1jk (n1jk−1)

n1j (n1j−1)

TAI Total species abundance ∑m
k=1

n1jk
n1j

GLR Larch basal area proportion (%) Gl
G

GBR Birch basal area proportion (%) Gb
G

Topographic conditions ALT (m) Elevation -

ASP(◦) Slope aspect -

SL(◦) Slope gradient -

ALTLCA Logarithmic elevation times cosine 
of aspect

ln(ALT ) ∗ cos(ASP)

ALTLTS Logarithmic elevation times tangent 
of slope

ln(ALT ) ∗ tan(SL)
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and diversity index) and (2) abiotic factors (such as 
topographic conditions and climate factors), and the 
best combination of predictors was selected through a 
method of best-subset regression (Hofmann et al. 2020). 
To show the importance of climate factors in simulating 
the diameter growth, we will attempt to develop growth 
models with/without climate variables for both larch 
and birch species. In the process of selecting the pre-
dictors, a preliminary correlation analysis between the 
response variable and predictors was used to remove 
predictors with Pearson correlation coefficients below 
0.1, because it would require considerable computation 
resources if all alternative predictors were used with a 
best-subset regression. In addition, significance and col-
linearity were considered during the process of selecting 
the appropriate predictors.

In many cases, both the conjoint contribution and its 
independent contribution of all predictors are studied. To 
identify the relative importance of the selected predic-
tors for the individual-tree diameter growth model, hier-
archical partitioning analysis was applied (Chevan and 
Sutherland 1991). In this study, the hier.part package in 
R software was used to perform hierarchical partitioning 
analysis (Nally and Walsh 2004).

2.4.2  Linear mixed‑effects model
The NFCI data used in this study were typical longitudi-
nal data from plots managed by several forestry bureaus. 
By identifying the nested and hierarchical structure of the 
data, the mixed-effects model has been widely used to 
explain the difference of each level (Fu et al. 2013). In this 
study, the measurement unit was individual trees, which 
were distributed in different plots nested within forestry 
bureaus; therefore, two levels (plot and forestry bureaus) 
and one level (plot or forestry) were evaluated. The general 
form of a two-level linear mixed-effects model can be writ-
ten as (Pinheiro and Bates 2000):

where i and j represented the level of forestry bureaus 
and plot, and M was the number of forestry bureaus and 
Mi was the number of plots in the i th forestry bureaus. 
yij was response vector of nij × 1  and   nij  was the num-
ber of trees in jth plots of ith forestry bureaus, Xij was 
fixed-effects model matrices of size nij × p where p was 

(2)

yij = Xijβ + Zi,jbi + Zijbij + εij
i = 1, 2, 3, . . . ,M, j = 1, 2, 3, . . . ,Mi

bi ∼ N (0,ψ1)

bij ∼ N (0,ψ2)

εij ∼ N (0,R)

Table 3 Summary information of the available climate variables extracted from the ClimateAP software. The definitions of the variable 
abbreviations are presented in Table 4

Attribute Variable Mean Minimum Maximum Standard 
deviation

Growing season PPTg(mm) 60.66 40.30 81.60 6.71

Taveg(℃) 8.36 5.49 11.10 1.04

Seasonal climate Tmax_DJFTmax(℃) −16.56 −19.60 −13.12 1.16

Tmax_MAM(℃) 7.49 5.22 9.82 0.88

Tmax_JJA(℃) 24.01 22.06 25.46 0.71

Tmax_SON(℃) 5.49 4.04 7.90 0.69

Tmin_DJF(℃) −31.78 −36.06 −26.44 1.66

Tmin_MAM(℃) −8.49 −12.64 −4.32 1.48

Tmin_JJA(℃) 10.00 6.56 13.84 1.25

Tmin_SON(℃) −9.21 −12.64 −4.92 1.39

PPT_DJF(mm) 13.41 8.40 23.00 2.62

PPT_MAM(mm) 66.77 44.60 83.60 8.48

PPT_JJA(mm) 307.41 197.60 428.20 38.22

PPT_SON(mm) 86.16 58.60 135.80 14.33

Annual climate MAT (℃) −2.37 −5.26 0.82 1.05

MAP(mm) 473.59 313.00 616.20 47.58

MAT lp −0.37 −0.75 0.13 0.02

MWMT (℃) 18.55 16.10 20.94 0.88

MCMT (℃) −26.30 −30.12 −21.60 1.57

TD(℃) 44.84 41.92 49.08 1.37

NFFD(mm) 131.64 103.60 160.60 9.99

PAS(mm) 65.84 38.40 113.00 12.20
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the number of predictors, β was the fixed-effects param-
eters. bi was the forestry bureaus-level random effects 
of length q1 and bij was the plot-level random effects of 
length q2 . Zi,j and Zij were corresponding model matrices 
of size nij × q1 and nij × q1 . ψ1 and ψ2 were the variance–
covariance matrices of bi and bij , which were defaulted 
to the positive definite matrix structure in this study. εij 
were the within-group errors and R was the correspond-
ing the variance–covariance matrix. It should be noted 
that all plots used in our study were repeatedly meas-
ured three times (in 2005, 2010 and 2015); that is, for one 
tree, there was a time correlation between the increment 
of two 5-year growth periods (2005–2010, 2010–2015). 

This issue could also be solved through the mixed-effects 
model, specifically through the customized structure of R 
for the error terms, which is expressed as follows:

where σ 2 is a scaling factor of the error dispersion, equal 
to the residual variance in the estimated model; G is a 
diagonal matrix that describes the heteroscedasticity 
variances of the within-tree error; and Ŵ is a correlation 
structure matrix of the within-tree error. In this study, the 
autoregressive correlation structure of order 1 (namely, 
AR(1)) was applied for the correlation structures, and 
this structure aimed to simulate the temporal correlation 
between the increment of the two 5-year growth periods.

The one-level linear mixed-effects model could be 
expressed easily since it followed the same general pat-
tern of Eq.  (2). The maximum likelihood method was 
used when comparing mixed-effects models with differ-
ent levels and random effects, and then the Akaike infor-
mation criterion (AIC) and log likelihood (LL) methods 
were used to compare the fitting performance of mixed-
effects models with different random effect parameters. 
In addition, the likelihood ratio test was used to compare 
the difference between one-level and two-level mixed-
effects models. Finally, the restricted maximum likelihood 
method was used to obtain the parameter estimates of 
the selected mixed-effects models. All the computation of 
model fitting and comparison metrics was done using the 
nlme package in R 4.2.0 software (R Core Team 2020).

2.4.3  Calibration for model prediction
It is common to use developed models to make direct pre-
dictions with data that are outside the scope of the mode-
ling data, but the resulting accuracy is often unsatisfactory 
(e.g., Miao et al. 2021; Hao et al. 2022). Therefore, a cali-
bration for the model predictions was applied to both basic 
and mixed-effects models in this study. Different calibra-
tion strategies were adapted for basic and mixed-effects 
models, which referred to the research by Temesgen et al. 
(2008). If there was a subsample that includes the diameter 
increment information for a previous period, the model-
specific predicted values could be calibrated as follows:

(a) for the basic model:

A subject-specific calibrated coefficient ( c∗ ) was calcu-
lated based on Eq. (4), and the subject-specific predicted 
values could be obtained with Eq. (5):

(3)R = σ 2G0.5ŴG0.5

(4)c∗ =

∑m
i=1yi ·

(

X ̂β

)

∑m
i=1

(

X ̂β

)2

Table 4 List of abbreviations and explanation of available 
climate variables for growth models. The employed values of the 
climate variables were the mean values over each survey interval

Attribute Variable (unit) Description

Growing season PPTg(mm) Mean annual growing season 
precipitation

Taveg(◦C) Mean annual growing season 
temperature

Seasonal climate Tmax_DJF(◦C) Max temperature for winter

Tmax_MAM(◦C) Max temperature for spring

Tmax_JJA(◦C) Max temperature for summer

Tmax_SON(◦C) Max temperature for autumn

Tmin_DJF(◦C) Min temperature for winter

Tmin_MAM(◦C) Min temperature for spring

Tmin_JJA(◦C) Min temperature for summer

Tmin_SON(◦C) Min temperature for autumn

PPT_DJF(mm) Mean precipitation for winter

PPT_MAM(mm) Mean precipitation for spring

PPT_JJA(mm) Mean precipitation for summer

PPT_SON(mm) Mean precipitation for autumn

Annual climate MAT (◦C) Mean annual temperature

MWMT (◦C) Mean warmest month temperature

MCMT (◦C) Mean coldest month temperature

TD(◦C) Difference between MWMT 
and MCMT (°C)

MAP(mm) Mean annual precipitation

DD_0 Degree days below 0 °C

DD5 Degree days above 5 °C

DD_18 Degree days below 18 °C

DD18 Degree days above 18 °C

NFFD Number of frost-free days

PAS(mm) Precipitation as snow 
between August in the previous 
year and July in the current year

NFFD Frost-free period

Eref Hargreaves reference evaporation

AHM Annual heat moisture index
AHM = (MAT + 10)/(MAP/1000)

CMD Hargreaves climatic moisture deficit
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where m is the size of the subsample, yi is the observed 
value of the response variable in the subsample, X is the 
design matrix, and ̂β  is the parameter estimate in the 
basic model.

(b) for the mixed-effects model:

Different from the basic model, the subject-specific pre-
dicted values of the mixed-effects model were obtained 
through both fixed effect and random effect parts, where 
the random effect part had to be calibrated with a sub-
sample (Yang et al. 2009). We used the estimated best lin-
ear predictors (EBLUPs) method to estimate the random 
effect for a specific subject (Mehtatalo and Lappi 2020):

where ûi is the estimated random effect parameter vec-
tor; ̂D is the variance-covariance matrix of random 
effect parameters, which was replaced by the estimates 
obtained from model fitting; Zi is the matrix of the par-
tial derivatives of the model function corresponding to 
the random effect parameters; ̂Ri is the variance-covari-
ance matrix of the error term, which can be recalculated 
according to Eq. (3); and êi is the bias, which is defined as 
the difference between the observed increment of diam-
eter growth and the predicted increment of diameter 
growth by the fixed effects parameters.

Without local observations of response variables, namely, 
the null subsample, the direct predicted values without cal-
ibration for basic models and the fixed part of the mixed-
effects model in prediction were both used as controls to 
compare the effects of calibration on prediction.

2.4.4  Assessment of model fitting and validation
The adjusted coefficient of determination ( R2

a , Eq.  (7)) 
and root mean square error ( RMSE , Eq. (8)) were used to 
assess the fitting performance of each model developed in 
this study. R2

a reflects the degree to which the selected pre-
dictors explain the variation in the response variable, and 
RMSE represents the fitted bias; therefore, a larger R2

a and a 
smaller RMSE indicate a better corresponding model.

(5)ŷ∗i = c∗ ·
(

X ̂β

)

(6)ûi = ̂DZT
i (Zi

̂DZT
i + ̂Ri)

−1êi

(7)R2
a = 1−

(

n− 1

n− p

)
∑n

i=1

(

yi − ŷi
)2

∑n
i=1

(

yi − yi
)2

(8)RMSE =

√

√

√

√

n
∑

i=1

(

yi − ŷi
)2
/(n− p)

Generally, model validation with independent data is 
necessary and important to evaluate the applicability and 
reliability of the developed model. The most difficult aspect 
of independent validation is the acquisition of independ-
ent data. At present, the common practice is to use the 
leave-one-out cross-validation (LOOCV) method, which 
contributes to optimizing the investigated data for model 
construction and can be used to simulate subsampling data 
(Kearns and Ron 1997). After obtaining the predicted val-
ues of all the developed models based on the description 
above, four statistics—mean error ( ME ), mean absolute 
error ( MAE ), mean percentage error ( MPE(%) ), and mean 
absolute percentage error ( MAPE(%))—were calculated 
with the model bias generated from the validation process 
to assess and compare the predictive performances of the 
models. The formulas were as follows:

where yo,i is the diameter observation of the i th tree, 
ŷp,i is the i th predicted value of the developed mod-
els obtained by the LOOCV method, yo is the mean 
value of all the observations, and n is the number of all 
trees. Please note that the four statistics presented in 
Eqs.  (9) ~ (12) were calculated using observations and 
model predictions in the original scale, specifically the 
observed and predicted diameter transformed from the 
model predictions. This was done in order to directly 
evaluate the magnitude of the bias between the measured 
and predicted diameter.

Available evidence has shown that prediction accuracy 
can be improved when the model predictions are cali-
brated by a subsample (Temesgen et  al. 2008). In addi-
tion, the subsample size can influence the calibrated 
effect in model prediction for the same model (Hao et al. 
2022). In this sense, subsamples with different sample 
sizes in a plot, which were obtained by random sampling 
without replacement, were used for prediction calibra-
tion. Specifically, various l (l = 1, 2, 3, …, 15) sample sizes 
were evaluated through bias statistics. In addition, the 
process of acquiring the subsample was repeated 500 

(9)ME =

n
∑

i=1

yo,i − ŷp,i

n

(10)MAE =

n
∑

i=1

∣

∣

∣

∣

yo,i − ŷp,i

n

∣

∣

∣

∣

(11)MPE(%) =

∑n
i=1

(

yo,i − ŷp,i
)

/yo
n

× 100

(12)MAPE(%) =

∑n
i=1

∣

∣yo,i − ŷp,i
∣

∣/yo,i

n
× 100
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significant (p < 0.05). In addition, the fitting performances 
of GMwoc and GMwc are provided in Table  5, where 
GMwc performed better than GMwoc; specifically, 
GMwc had a higher R2

a (0.3594 for larch and 0.4040 for 
birch) and a lower RMSE (0.9527 for larch and 0.9390 for 
birch), which indicated that the introduction of climate 
variables improved the model.

No systematic trend was observed when residuals were 
plotted against the corresponding model fitted values 
(Fig.  2), which suggested that the diameter increment 
model was able to adequately describe the variabilities of 
response variables. Figure 3 shows the proportion of varia-
tion explained by the respective predictors to the response 
variable based on the hierarchical partitioning analysis of 
GMwc. Intraspecific competition contributed the most in 
GMwc, followed by initial DBH, interspecific competition, 
elevation, basal area, basal area proportion of larch, tem-
perature, and precipitation for larch, and we found that the 
proportion of variation explained by competition and tree 
size was more than 70% for larch. For birch, both intraspe-

cific competition and tree size contributed the most (more 
than 70%) to the corresponding GMwc, followed by basal 
area, temperature, basal area proportion of birch, elevation, 
and precipitation. Therefore, topography and climate had 
little effect on diameter growth, although the correspond-
ing variables were statistically significant.

The effects of all predictors except for DBH1 on the 
diameter growth for larch and birch were simulated and 
analyzed by the controlled variable method (Fig.  4). In 
the process of simulation, mean values were used for the 
analyzed predictors except for the predictor of interest, 
which was set as the minimum, mean, and maximum 
values in modeling data, and therefore, the influences of 
different predictors on the increment of diameter growth 
were clearly shown. Consistent with the results of hier-
archical partitioning analysis, Fig.  4 also supported that 
competition, especially intraspecific competition, had the 

times in each size to avoid random bias. In this analysis, 
we expected to find an appropriate subsample size that 
comprehensively considered the model prediction accu-
racy and measurement cost.

3  Results
3.1  Basic model
When the predictors were kept the same, the fitting per-
formance of the corresponding model was better when 
the increment of basal area was used as the response vari-
able. Therefore, the logarithm of 5-year growth in squared 
diameter ( ln

(

DBH2
2 − DBH2

1 + 1
)

 ) was chosen as the 
final response variable. However, the final predictors used 
in the growth model for Dahurian larch and white birch 
were determined by collinearity and significance analyses 
according to the results of full subset regression. The final 
forms of the basic model were as follows (GMwoc: growth 
model without climate variables; GMwc: growth model 
with climate variables):

Dahurian larch:

White birch:

where β0~β8 are model parameters, DBH1 and DBH2 are 
the initial and final tree diameters in the period, DBHN 
is the reciprocal of the initial tree diameter, DBHL is the 
logarithmic initial tree diameter, BALD1 is the ratio of the 
intraspecific basal area of larger trees to DBH1 , BALD2 
is the ratio of the interspecific basal area of larger trees 
to DBH1 , G is the logarithmic stand basal area, GLR is 
the basal area proportion of larch, GBR is the basal area 
proportion of birch, ALT  is the elevation, TD is the dif-
ference between the mean warmest month temperature 
and mean coldest month temperature, Tmax_MAM is 
the maximum temperature for spring, and PPT_SON 
and PPT_DJF are the mean precipitation for autumn 
and winter, respectively. In addition, the response vari-
able was increased by 1 to avoid the same initial and 
final DBH in the period. The parameter estimates for 
Eqs. (13)–(16) are presented in Table 5, and they were all 

(13)GMwoc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= β0 + β1DBHN + β2BALD1 + β3BALD2 + β4lnG + β5lnGLR + β6ALT + ε

(14)GMwc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= β0 + β1DBHN + β2BALD1 + β3BALD2 + β4lnG + β5lnGLR + β6ALT + β7TD + β8PPT_SON + ε

(15)GMwoc : ln
(

DBH2
2 − DBH2

1 + 1
)

= β0 + β1DBHL + β2BALD1 + β3lnG + β4GBR + β5ALT + ε

(16)GMwc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= β0 + β1DBHL + β2BALD1 + β3lnG + β4GBR + β5ALT + β6Tmax_MAM + β7PPT_DJF + ε
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largest contribution to the variation in diameter growth, 
followed by elevation, basal area, basal area proportion 
of larch, temperature, and precipitation for larch. Addi-
tionally, intraspecific competition provided the largest 
contribution to the diameter growth model for birch, fol-
lowed by basal area, temperature, basal area proportion 
of birch, elevation, and precipitation. For both larch and 
birch, the simulation shown in Fig.  4 indicated that the 
diameter increment of a 5-year period decreased with 

the increasing competition effect described by BALD1 , 
BALD2 , and LnG . The diameter increment of a 5-year 
period also decreased as the elevation and precipitation 
of autumn and winter increased. Interestingly, the effect 
of stand composition described by the species-specific 
basal area proportion on the 5-year diameter increment 
of the corresponding species was completely opposite, 
namely, the basal area proportion of larch had a negative 
effect on the 5-year diameter increment of larch, and the 

Table 5 Parameter estimates and fitting indices of the best basic models for the larch and birch species

Species Items Parameters GMwoc GMwc MGMwoc MGMwc

Larch Parameter (Fixed effect) β0 5.6194 (0.0742) 11.1847 (0.2001) 8.2906 (0.5524) 11.5443 (0.2522)

β1 −7.1041 (0.2274) −7.7252 (0.2246) −2.7539 (0.4384) −3.5632 (0.4242)

β2 −0.1054 (0.0044) −0.0951 (0.0043) −0.1795 (0.0076) −0.1598 (0.0073)

β3 −0.1073 (0.0058) −0.1014 (0.0057) −0.1430 (0.0134) −0.1449 (0.0128)

β4 −0.1833 (0.0216) −0.1976 (0.0213) −1.1533 (0.1799) −0.2204 (0.0666)

β5 −1.0565 (0.0398) −1.0351 (0.0392) −1.4186 (0.1855) −0.5348 (0.2378)

β6 −0.0010 (0.0000) −0.0010 (0.0000) −0.0009 (0.0003) −0.0008 (0.0002)

β7 −0.1165 (0.0043) −0.1299 (0.0043)

β8 −0.0034 (0.0004) −0.0062 (0.0008)

Variance structure σ 0.9685 0.9527 0.8226 0.8255

var(u0) 91.7477 21.8248

var(u1) 23.1871 0.7543

var(u2) 11.1196 14.8472

cov(u0, u1) −1.55 ×  102 −1.8108

cov(u0, u2) −1.01 ×  103 −31.7555

cov(u1, u2) 3.8675 −10.4040

Correlation structure ρ 0.4678 0.4667

Fitting indices R2a 0.3381 0.3594 0.5397 0.5354

RMSE 0.9685 0.9527 0.8076 0.8114

Birch Parameter (Fixed effect) β0 2.3359 (0.0446) 1.3198 (0.1098) 4.9196 (0.4649) 2.7604 (0.3398)

β1 0.9271 (0.0199) 0.9447 (0.0199) 0.1611 (0.0561) 0.2298 (0.0843)

β2 −0.1946 (0.0046) −0.1919 (0.0046) −0.3704 (0.0111) −0.3557 (0.0219)

β3 −0.5475 (0.0179) −0.5377 (0.0179) −0.6574 (0.1530) −0.1178 (0.0468)

β4 0.4035 (0.0282) 0.3790 (0.0281) 0.3380 (0.1529) 0.4261 (0.1015)

β5 −0.0007 (0.0000) −0.0004 (0.0000) −0.0005 (0.0002) −0.0006 (0.0002)

β6 0.1266 (0.0092) 0.1207 (0.0159)

β7 −0.0165 (0.0021) −0.0308 (0.0035)

Variance structure σ 0.9425 0.9300 0.8162 0.8183

var(u0) 58.4063 15.1967

var(u1) 0.3915 1.8518

var(u2) 7.1145 0.1119

cov(u0, u1) −1.6921 −27.8033

cov(u0, u2) −4.04 ×  102 −1.4878

cov(u1, u2) −0.3844 0.1753

Correlation structure ρ 0.4149 0.3989

Fitting indices R2a 0.3996 0.4040 0.5633 0.5611

RMSE 0.9425 0.9390 0.8038 0.8059
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basal area proportion of birch had a positive effect on the 
5-year diameter increment of birch.

3.2  Mixed‑effects models
The stepwise addition of the random effects of different 
levels (plot and forestry bureaus) to Eqs. (13)–(16) resulted 
in the best combination of random effects, according 
to the AIC and the likelihood ratio test (LRT). The LRT 
result supported that the performance of the plot-level 

mixed-effects model was better than that of the for-
estry bureau-level mixed-effects model and was not sig-
nificantly different from that of the two-level (plot nested 
within forestry bureaus) mixed-effects model. Therefore, 
the plot-level mixed-effects diameter growth models were 
developed based on GMwoc and GMwc, namely, the 
mixed-effect model without climate variables (MGMwoc) 
and with climate variables (MGMwc). The final formulas 
were as follows:

Fig. 2 Residuals plotted against fitted values of developed models in the diameter growth model

Fig. 3 Contribution ratios of predictors to the diameter increment growth model by species
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Dahurian larch:

White birch:

where u0 , u1 , and u2 are random effect parameters, and 
the others are defined above. The fitting results of the 
mixed-effects models are listed in Table  5, where the 
parameter estimates were all significant and the signs 

(17)MGMwoc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= (β0 + u0)+ (β1+u1)DBHN + β2BALD1 + β3BALD2 + (β4 + u2)LnG + β5lnGLR + β6ALT + ε

(18)MGMwc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= β0 + (β1 + u0)DBHN + β2BALD1 + β3BALD2 + (β4 + u1)+ LnG(β5 + u2)lnGLR + β6ALT + β7TD + β8PPT_SON + ε

(19)MEMwoc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= (β0 + u0)+ (β1 + u1)DBHL + β2BALD1 + (β3 + u2)LnG + β4GBR + β5ALT + ε

(20)MGMwc : ln
(

DBH
2
2 − DBH

2
1 + 1

)

= (β0 + u0)+ (β1 + u1)DBHL + (β2 + u2)BALD1 + β3LnG + β4GBR + β5ALT + β6Tmax_MAM + β7PPT_DJF + ε

of the parameters were consistent with the basic mod-
els. The R2

a of MGMwoc was 59.6 and 41.0% higher than 
those of GMwoc for larch and birch, respectively, as 
were the MGMwc and GMwc, which indicated that the 

Fig. 4 Responses of the DBH increment curve to changes in different covariates for larch and birch trees. A, B, and C represent cases in which 
the control variables are at the minimum, median, and maximum, respectively
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introduction of the plot-level random effect improved the 
basic model significantly. However, the performance of 
MEMwoc was slightly better than that of MGMwc based 
on the R2

a and RMSE values. In addition, the correlation 
coefficient in the R matrix (Eq.  (3)) was approximately 
0.4 for the two species, which suggested that there was a 
temporal correlation between the increments of the two 
5-year growth periods.

3.3  Analysis of model validation
The bias statistics that assess the prediction accuracy of 
diameter for the developed models are listed in Table 6, 
and the results suggest that the basic and mixed-effects 
models we developed slightly underestimated the DBH 

increments for the two species since the ME and MPE 
values were greater than 0. However, they were approxi-
mately unbiased models in the prediction because ME 
and MPE were close to 0 according to Table 6. The MAE 
s were found to be smaller than 0.4  cm, and the corre-
sponding MAPE s were also less than 4% for the two spe-
cies, indicating that the basic and mixed-effects models 
performed adequately well for predictions related to an 
individual. In addition, the introduction of plot-level ran-
dom effects and climate variables provided more accu-
rate predictions, which were similar to the fitting results 
of the models.

Figure  5 further demonstrates the superiority of the 
MGMwc model in all diameter classes for the two spe-
cies. The MAE increased gradually with increasing diam-
eter classes, but the maximum was not more than 0.7 cm. 
GMwoc performed worse than GMwc in each grade, 
which indicated that climate variables are important in 
modeling diameter growth. Compared with the addition 
of climate variables, the introduction of plot-level ran-
dom effects improved the model prediction more signifi-
cantly in all diameter classes.

3.4  Relationship between prediction calibration 
and prediction accuracy

The prediction results obtained with the models devel-
oped under different sampling sizes are shown in Fig. 6. 
After calibration, GMwoc, GMwc, and MEMwc had 
similar prediction accuracies, which were all better than 
the prediction accuracy of MGMwoc. The absolute bias 

Table 6 The bias statistics of diameter for the diameter 
increment models of larch and birch

Species Models Validation indices

ME(cm) MAE(cm) MPE(%) MAPE(%)

Larch GMwoc 0.1758 0.3978 1.4589 3.7614

GMwc 0.1676 0.3865 1.3910 3.6683

MGMwoc 0.1542 0.3630 1.2796 3.4335

MGMwc 0.1570 0.3655 1.3025 3.4573

Birch GMwoc 0.1470 0.3468 1.3515 3.4117

GMwc 0.1433 0.3453 1.3174 3.3988

MGMwoc 0.1335 0.3152 1.2272 3.0989

MGMwc 0.1357 0.3167 1.2469 3.1054

Fig. 5 Plot of the absolute bias across different diameter classes
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between the measured DBH and predicted DBH gradu-
ally decreased as the number of samples increased; how-
ever, the rate of decrease tended to be stable when the 
sample size was more than nine trees. In Fig. 6, the pre-
diction calibration actually increased the prediction bias 
at the start of sampling (sample size was smaller than 5), 
and then, calibration gradually improved the prediction 
effect of the basic model. For the mixed-effects model, 
the prediction accuracy of the calibrated models was still 
improved compared with that of the uncalibrated mod-
els and was better than that of the basic model under the 
same conditions, even if only one tree was used in model 
calibration. In addition, MGMwoc performed slightly 
worse than MGMwc in prediction calibration with small 
samples; otherwise, the opposite was true. Overall, the 
prediction errors tended to be basically stable when the 
sample size was greater than nine trees, and to limit costs 
while achieving relatively high efficiency, we suggest 
sampling nine trees per plot for the prediction of indi-
vidual-tree diameter growth in birch and larch with the 
developed models in this study.

4  Discussion
4.1  Responses to biotic and abiotic factors
Individual-tree diameter growth models are frequently 
estimated using tree-, competition-, site-, and climate-
level variables, which are usually easy to obtain via field 
investigations and software such as ClimateAP (Biging 
and Dobbertin 1995; Fekedulegn et al. 2003; Kuehne et al. 
2016; Saud et  al. 2019). Based on the fitting results of 
GMwc, the variable BALD1 was the most important tree-
level variable, which referred specifically to intraspecific 

competition and indicated the social status of individual 
conspecific trees; it was calculated as BAL divided by the 
logarithmic diameter of the tree. The negative correlation 
between BALD1 and tree growth showed that competi-
tion within tree species reduced tree growth rates. This 
finding was supported by the findings of Wykoff et  al. 
(1982); since there was less light available for smaller 
trees, BALD1 may be a surrogate for light measurements. 
BALD2 was also considered to be an effective evaluation 
index for competition among different species, which 
influenced the diameter growth of larch in our study. 
The coefficient of BALD2 was slightly greater than that of 
BALD1 , as shown in Table 5, indicating that the growth 
of larch was more sensitive to changes in interspecific 
competition. Therefore, mixing with birch can promote 
the diameter growth of larch in a scenario in which larch 
has an advantage in interspecific competition. In addi-
tion, tree size was an important tree-level variable, which 
may reflect the growth time in mixed forests, and the 
positive value of this parameter indicated that the diam-
eter growth accelerated with increasing DBH in the ini-
tial period. lnG represents the stand attributes, especially 
when substituted for the stand density variable, and G 
is the stand basal area of all species and was negatively 
correlated with growth. Increased crowding and reduced 
growing space resulted in lower growth rates.

The variables GLR and GBR represent the basal area pro-
portions of larch and birch species in the stand and were 
used in this study to represent species diversity or mix-
ture (Riofrío et al. 2019; Bottero et al. 2021). The param-
eter estimate for GLR was negative and had the opposite 
sign as that for GBR . This difference showed that the 

Fig. 6 Relationship between prediction biases and the sample sizes used to calibrate the growth models of larch and birch. The red lines represent 
the prediction bias in the scenario in which the calibration data are not available
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growth rate of the birch species was suppressed, while the 
growth of the larch species was promoted when the two 
species were mixed, which was the same as the analysis of 
the effect of competition. Figure 4 also shows the differ-
ences in growth under different proportions of these two 
species, with larch having a more obvious gain. The larch 
species, a more important managed tree species, showed 
negative growth responses to intraspecific neighbors, but 
the effects were counterbalanced at the stand level by a 
corresponding increase in interspecific trees. The princi-
ples of interaction among mixtures of species are com-
plex; they involve nutrient cycling, photosynthesis, and 
soil physical and chemical properties, and they remain 
mostly unknown. Larch and birch have similar growth 
traits, such as light demands and preferences for fertile 
soil, and they can survive in regions with severe environ-
ments, such as high mountain sites or along the upper 
parts of valleys (Kloeppel et  al. 1998). During interspe-
cific interactions, larch competes effectively with birch 
due to its higher resistance to harsh climatic conditions. 
Larch surpasses other tree species in water use efficiency 
and can survive at a semidesert level of precipitation 
(Berg and Chapin 1994). Moreover, larch can survive in 
the permafrost zone because its deciduous leaf character-
istic and dense bark protect stems from winter desicca-
tion and snow abrasion (Mao et al. 2010).

The parameter estimates of variable ALT were nega-
tive for both larch and birch species, showing that tree 
growth was restrained with increasing elevation. This 
pattern was consistent with the results of a study on 
stand-level volume growth (Wang et al. 2021). In the pro-
cess of adding the climate variables, the best-performing 
variables in this study were TD and PPT_SON for larch 
and Tmax_MAM and PPT_DJF for birch. The effects of 
precipitation and temperature on diameter growth were 
not uniform for the two species, namely, precipitation 
inhibited the diameter growth of larch and birch trees, 
while temperature had a negative effect on the diameter 
growth of larch and a positive effect on the diameter 
growth of birch. However, both larch and birch species 
were more sensitive to the climate variables related to 
temperature than to those related to precipitation 
(Fig. 4). TD was calculated as the difference between the 
warmest and coldest months, which affected the above-
ground conditions and soil conditions (Zhang et  al. 
2019). In general, the lower the maximum temperature in 
the coldest month in winter is, the higher the TD , which 
strongly affects winter ground conditions. Larch rarely 
grows in winter because its leaves are stripped, and most 
physiological activity tends to stall; however, the higher 
temperature in the warmest month promotes the growth 
of larch. The maximum temperature in spring was more 
important than that in the other seasons for birch, and it 

may play an important catalytic role in photosynthesis for 
this species (Levani and Eggertsson 2008). In addition, 
a higher maximum temperature in spring may lead to a 
reduced frozen depth, which allows for greater tree root 
expansion and higher root activity in the future (Alva-
rez‐Uria and Körner 2007). The precipitation in autumn 
and winter had a negative effect on the growth of birch 
and larch, respectively. The region of this study in China 
with the highest latitude and the temperature in autumn 
and winter is less than 0℃ (Fig. 1) which indicated that 
the precipitation (snow) in cold seasons would slow the 
diameter growth of larch and birch. The same result was 
presented in studies of the common juniper (Juniperus 
communis L.) growth in the Alpine tundra (Carrer et al. 
2019). Some other studies had opposite results that snow 
promote the growth by providing protection against 
frosts and melting snow as water source for next growth 
season (Rixen et  al. 2010; Hallinger et  al. 2010). How-
ever, here the snowpack could shorten cambial activity 
by delaying the onset or anticipating the end of the grow-
ing season the extensive duration of snow cover delays 
the onset of the vegetative period, inducing a negative 
effect on growth (Francon et al. 2017). And the negative 
effect is likely not direct and it might represent the collat-
eral consequence of temperature on snow characteristics 
(Carrer et al. 2019).

4.2  Model calibration
In the mixed-effects model, the fixed-effects parameters 
were global to all groups, whereas the random effects 
parameters were plot specific. One new observation was 
that the mixed-effects model should be calibrated, which 
involves predicting the random effect parameters for the 
group, i.e., individual-tree diameter growth. New sam-
ples were used to predict the random effect parameters 
by estimating the best linear predictors (Mehtatalo and 
Lappi 2020), and the effects of different sample sizes on 
the prediction accuracy for the base models (GMwoc 
and GMwc) and mixed-effects models (MGMwoc and 
MGMwc) were evaluated. To ensure the randomness of 
sampling, the sampling of random trees was conducted 
to simulate new observations to calculate the random 
effects parameter to calibrate the models. Figure 6 shows 
that the model performance improved as the number of 
trees sampled increased, which was supported by other 
studies (Bronisz and Mehtatalo 2020a, b; Miao et  al. 
2021). However, the prediction accuracy tended to be 
basically stable when the sample size was greater than 
nine trees. When the sample size was small, the cali-
brated base model was less accurate than the uncorrected 
model, and the prediction accuracy of the mixed-effects 
model after calibration was always higher than that of 
the uncalibrated scenarios. Therefore, the prediction 
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accuracy of the fixed effects (the scenario in which the 
calibration data are not available) for the mixed-effects 
model was lower than that of the basic model if the pre-
measured samples could not be obtained. In this case, 
it is not recommended to use the mixed-effects model 
to predict the future growth of trees. The mixed-effects 
model was more suitable for predicting the growth of 
trees at the present stage since it was easy to calibrate the 
samples. Because the measurement of DBH is relatively 
simple, nine trees were randomly selected for each plot 
for the calibration of random effects. Compared with 
the scale of the whole forest, this approach can not only 
lower the cost of investigation but also ensure the predic-
tion accuracy of the mixed-effects model, which further 
enhances the practicability of the mixed-effect model 
(Bronisz and Mehtatalo 2020a, b).

4.3  Prospect and notes
In China, nine national forest resources continuous 
inventories have been completed, and a large amount 
of dynamic forest resource data has been generated for 
both planted and natural forests. However, such a long-
term and systematic NFCI dataset is typically only used 
for the aggregation and statistics of forest resource infor-
mation, without fully exploring its deeper potential. For 
instance, it can be utilized for conducting large-scale 
research on forestry-related scientific questions or guid-
ing the sustainable utilization and management of forest 
resources. Therefore, further exploration and utilization 
of such data are needed. Exploring the diameter growth 
mechanisms based on biotic and abiotic factors using 
these continuous and systematic NFCI data can not only 
help estimate the forest productivity and carbon balance 
on the regional scale, but also provide certain indicators 
for the evaluation of the structure and function of forest 
ecosystems. In this sense, a case study for larch and birch 
in Daxing’an Mountains, Northeast China, was provided 
here, and it has the potential to contribute not only a 
practical model for supporting sustainable forest man-
agement in secondary forests in the eastern Daxing’an 
Mountains, but also as an indicator for analyzing tree 
diameter growth in a wider range of forest stand types.

In the past, diameter growth models mainly consid-
ered biotic factors such as tree size and stand charac-
teristics since these biometric factors were the main 
drivers linked to diameter growth (Wykoff 1990; Les-
sard et al. 2001; Andreassen and Tomter 2003). However, 
such models have certain limitations, such as they can-
not evaluate the tree growth in the context of climate 
change. In this study, the response of diameter growth of 
larch and birch to tree size, stand characteristics, eleva-
tion, precipitation, and temperature were simulated. 
While obtaining general conclusions such as the positive 

correlation between tree size and diameter growth, and 
the negative correlation between competition and stand 
basal area with diameter growth, we also quantified the 
effects of elevation, temperature, and precipitation on 
diameter growth for larch and birch. Our study showed 
that larch and birch diameter growth are more sensitive 
to temperature than to precipitation, and less diameter 
growth occurs at lower temperatures and with more pre-
cipitation in winter. Furthermore, a better understanding 
of the growth mechanisms and patterns of trees and for-
ests can be gained, thereby improving existing prediction 
models and frameworks, and more accurately predicting 
the future growth of trees and forests in a more scientific 
way.

Some biomass models for larch and birch in this region 
were previously developed at Northeast Forestry Uni-
versity, China (Dong et al. 2018). In this sense, accuracy 
diameter growth models would be more meaningful to 
contribute to research on the carbon cycle and changes 
in carbon dynamics in study area. Moreover, consider-
ing the influence of climate factors in diameter increment 
prediction could improve the accuracy of diameter esti-
mation and further increase the prediction accuracy of 
the carbon storage and carbon sequestration capacities 
of forest ecosystems in the eastern Daxing’an Mountains, 
Northeast China. In addition, if our growth models are 
used in other regions, caution should be taken because 
different environmental and tree growth conditions may 
yield different relationships between tree growth and 
variables; thus, the models could have larger prediction 
errors.

5  Conclusion
Individual growth linear mixed-effects models were 
developed for Dahurian larch and white birch spe-
cies in a boreal, overharvested, secondary forest in 
the eastern Daxing’an Mountains, China. The growth 
of trees increased with increasing DBH and decreased 
with increasing BALD1 , BALD2 , lnG , lnGLR , ALT , TD , 
and PPT_SON  for larch. For birch, tree growth also 
increased with increasing DBH , GBR , and Tmax_MAM 
and decreased with increasing BALD1 , lnG , ALT , 
and PPT_DJF. The subject-specific predictions were 
obtained by calibrating the mixed-effects model using 
plot-level random effects based on which zero to fifteen 
randomly sampled trees of both species were sampled 
per plot. Our results indicated that (1) the mixed-effects 
model had obvious advantages over the OLS method; 
(2) to calibrate the mixed-effects models, it was best to 
include at least nine random additional individual tree 
diameter measurements to predict the growth of larch 
and birch; (3) larch species were dominant in inter-
specific competition when mixed with birch; and (4) 



Page 19 of 21Wang et al. Annals of Forest Science           (2023) 80:34  

temperature and precipitation, especially temperature, 
had important growth-promoting effects on both the 
larch and the birch species. The impact of species mix-
ture and climate on the growth of Dahurian larch and 
white birch must be considered in future management 
policies. Quantifying the response of diameter growth 
to biotic and abiotic factors enables the monitoring of 
biological and ecological processes within relevant for-
est ecosystems, facilitating a more precise assessment 
of present and future forest resources in the area. Fur-
thermore, it also can provide a scientific basis for for-
mulating effective forest management strategies, thus 
narrowing the gap between forest ecological value and 
forestland management by balancing the ecological 
equilibrium of forests with the rational utilization of 
forest resources simultaneously.
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