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Effect of sample size on the estimation 
of forest inventory attributes using airborne 
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Abstract 

Key message  Sample size (number of plots) may significantly affect the accuracy of forest attribute estimations using 
airborne LiDAR data in large-scale subtropical areas. In general, the accuracy of all models improves with increasing 
sample size. However, the improvement in estimation accuracy varies across forest attributes and forest types. Overall, 
a larger sample size is required to estimate the stand volume (VOL), while a smaller sample size is required to estimate 
the mean diameter at breast height (DBH). Broad-leaved forests require a smaller sample size than Chinese fir forests.

Context  Sample size is an essential factor affecting the cost of LiDAR-assisted forest resource inventory. Therefore, 
investigating the minimum sample size required to achieve acceptable accuracy for airborne LiDAR-based forest 
attribute estimation can help improve cost efficiency and optimize technical schemes.

Aims  The aims were to assess the optimal sample size to estimate the VOL, basal area, mean height, and DBH 
in stands dominated by Cunninghamia lanceolate, Pinus massoniana, Eucalyptus spp., and other broad-leaved species 
in a large subtropical area using airborne LiDAR data.

Methods  Statistical analyses were performed on the differences in LiDAR metrics between different sample sizes 
and the total number of plots, as well as on the field-measured attributes. The relative root mean square error (rRMSE) 
and the determination coefficient (R2) of multiplicative power models with different sample sizes were compared. 
The logistic regression between the coefficient of variation of the rRMSE and the sample size was established, 
and the minimum sample size was determined using a threshold of less than 10% for the coefficient of variation.

Results  As the sample sizes increased, we found a decrease in the mean rRMSE and an increase in the mean R2, 
as well as a decrease in the standard deviation of the LiDAR metrics and field-measured attributes. Sample sizes 
for Chinese fir, pine, eucalyptus, and broad-leaved forests should be over 110, 80, 85, and 60, respectively, in a practical 
airborne LiDAR-based forest inventory.

Conclusion  The accuracy of all forest attribute estimations improved as the sample size increased across all forest 
types, which could be attributed to the decreasing variations of both LiDAR metrics and field-measured attributes.
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1  Introduction
Airborne laser scanning (ALS), also known as airborne 
light detection and ranging (LiDAR), has been used for 
operational forest inventories in Nordic countries since 
2002 (Næsset 2002,  2004; Maltamo and Packalen 2014). 
Since then, the reliability of using ALS data to estimate 
large-scale forest inventory attributes, such as mean stem 
diameter or diameter at breast height (DBH), mean tree 
height (H), basal area (BA), stand volume (VOL), and 
aboveground biomass (AGB), has been verified in many 
other countries (Turner et  al. 2011; White et  al. 2013; 
Novo-Fernández et al. 2019). ALS-based forest attribute 
estimations and mappings typically utilize an area-based 
approach (ABA) via a two-stage procedure (Næsset and 
Bjerknes 2001; Næsset 2002; Jensen et al. 2006; Maltamo 
et al. 2006; Thomas et al. 2006). Field plot measurements 
are critical, but they are expensive, time-consuming, and 
labor-intensive (Luo et al. 2013; Dube et al. 2017; Jarron 
et al. 2020). Therefore, optimizing field plot measurement 
schemes has been a challenge for ALS-based large-scale 
forest resource inventory and monitoring (Junttila et  al. 
2013; Fassnacht et al. 2014).

The cost of field plot measurements is mainly affected 
by three factors: the number of plots (sample size), plot 
size, and plot positioning. While using the regression 
models to estimate the DBH, BA, and VOL, Gobakken 
and Næsset (2008) found that, in most cases, compared 
to the small plot (200 m2), the relative root mean square 
error (rRMSE) of the model obtained with the large plot 
(300–400 m2) decreased, and the determination coef-
ficient (R2) increased, indicating the model accuracy 
improved. Several other studies have supported this con-
clusion (Adnan et al. 2017; Næsset et al. 2011; Watt and 
Watt 2013; Hernández-Stefanoni et al. 2018; Zolkos et al. 
2013). Ruiz et  al. (2014) suggested a minimum plot size 
of 500–600 m2 for estimating the VOL, AGB, and BA, 
while Lombardi et  al. (2015) recommended a minimum 
plot area of 500 m2 for evaluating the forest indicators. 
Regardless of plot size and forest conditions, plot posi-
tional errors of up to 1  m had minor effects on predic-
tion accuracy (Gobakken and Næsset 2009). The sample 
size is the most critical factor affecting the cost of field 
measurement. Using Monte Carlo simulation random 
selection, Gobakken and Næsset (2008) found that the 
estimation accuracy of forest attributes showed only a 
minor decrease when the sample size was reduced by 75 
or 50% from the original numbers of 50, 34, and 48. The 
results of Silva et al. (2017) showed that modeling with 63 
plots could achieve accuracy comparable to that of tradi-
tional forest inventory methods, and the model accuracy 
gradually improved as the sample size increased. Strunk 
et  al. (2012) suggested that the variability of mean esti-
mates increases proportionally to 

√
n as the sample size 

(n) increases and that it is not appropriate to extrapo-
late estimates from confidence intervals and the model’s 
RMSE if the sample size is less than 75. In their study on 
the growing stock volume estimation of pine-dominated 
forests in Poland, Stereńczak et al. (2018) concluded that 
the model accuracy reached stability only as the number 
of sample plots reached 300 or more.

The sample size required for forest attribute estima-
tion depends on various factors, including the extent of 
the study area, sample selection, complexity of the forest 
structure, modeling methodology, and sampling scheme. 
Generally, larger study areas require more sample plots 
(Xu et al. 2018; Ioki et al. 2010). Ensuring adequate cover-
age of the geospatial and feature spaces of the variables 
with sample plots can improve model performance (Junt-
tila et al. 2013). Some researchers believed that modeling 
techniques had a larger impact on model accuracy than 
sampling methods. However, the results varied greatly. 
For example, Yang et  al. (2019) suggested that the ran-
dom forest imputation model was most effective with 
small sample sizes (less than 50), while da Silva et  al. 
(2020) reported that the ordinary least-squares method 
required fewer sample plots than the random forest (RF) 
method. The required sample size varies with the sam-
pling method, and many previous studies have focused 
on this topic. Maltamo et  al. (2011) found that LiDAR-
assisted selection of field plots could improve the estima-
tion accuracy of nonparametric models. Several studies 
have shown that using ALS data as prior information to 
stratify the forest before selecting samples could help 
reduce the required sample size while ensuring high 
accuracy (Hawbaker et  al. 2009; Maltamo et  al. 2011; 
Grafström and Ringvall 2013). Following this approach, 
the sample size in the operational Norwegian forest 
resource inventory was about 50 per stratum (Næs-
set 2015). However, the number of sample plots in most 
existing studies is typically small, with less than 100 plots 
per stratum, which is insufficient to demonstrate the 
effect of sample size on the estimation accuracy of forest 
inventory attributes.

Heavy rainfall is common in tropical and subtropical 
regions, where frequent rains and fog can render air-
borne LiDAR data acquisition and field measurements 
difficult. In addition, trees in these areas generally grow 
rapidly, with fast-growing eucalyptus forest plantations, 
for example, showing annual height growth of about 
5–8 m. Using LiDAR to stratify these forests before con-
ducting a field campaign in a large-scale region can result 
in a long time interval between LiDAR data acquisition 
and field measurements, which may prevent LiDAR point 
clouds from accurately depicting the three-dimensional 
(3D) structures of the forest canopy and affect the regres-
sion relationships between LiDAR-derived metrics and 
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field-measured attributes. Therefore, in practical applica-
tions, both airborne LiDAR data acquisition and field plot 
measurements are generally carried out simultaneously.

This study examines the impact of sample size on the 
accuracy of forest attribute estimation using airborne 
LiDAR data. We analyzed one thousand field plots across 
four forest types in a large subtropical study area to 
achieve the following specific objectives: (1) assess how 
sample size influences the accuracy of different forest 
attributes across different forest types through multivari-
ate power models, (2) evaluate the effects of sample size 
on the airborne LiDAR-derived metrics and forest attrib-
utes at the plot level, and (3) assess the minimum sample 
size required for airborne LiDAR data to support large-
scale subtropical forest resource inventories. Throughout 
this work, we use the terms “sample size” and “number of 
sample plots” interchangeably to refer to the number of 
field plots used to calibrate the model.

2 � Materials and methods
2.1 � Study site
The study site covered the entire Guangxi Zhuang 
Autonomous Region in South China, spanning an area 
of 237.6  ×  103 km2 and expanding over an area from 
104°28′–112°04′E and 20°54′–26°24′N (Fig.  1). In this 
study, the airborne LiDAR data acquisitions and field plot 
measurements were carried out separately over 3 years in 
three regions because of the financial allocations; namely, 
the Nanning region (with an area of 22.1 × 103 km2), the 
eastern region (128.4 × 103 km2), and the western region 
(87.1 × 103 km2).

The study area is bisected by the Tropic of Cancer 
and lies in a subtropical monsoon climate zone, with an 
annual average temperature of 16.5–23.1 °C and an aver-
age annual rainfall of 1080–2760  mm. The rainy season 
occurs from April to September, accounting for 70–85% 
of annual rainfall. The topography of the study area is 
high in the northwest and low in the southeast, sur-
rounded by mountains with high elevation, river valleys, 
plains, coastal platforms, and hills with low elevation in 
the center.

The study area covers three vegetation zones, namely, 
north tropical, south subtropical, and middle subtropi-
cal, from south to north. Seasonal rainforests, monsoon 
evergreen broad-leaved forests, and typical evergreen 
broad-leaved forests are the representative forest veg-
etation types in the study area. Additionally, coniferous, 
bamboo, and karst shrub forests can also be found in 
each vegetation zone. According to the 5th forest man-
agement inventory of Guangxi (2017–2020), Chinese fir 
forests (Cunninghamia lanceolata (Lamb.) Hook), Mas-
son pine forests (approximately 90% is Pinus massoniana 
Lamb., with the remainder being P. elliottii Engelmann 
and P. yunnanensis Franch), Eucalyptus plantations 
(mainly Eucalyptus urophylla S. T. Blake and E. gran-
dis × urophylla), and broad-leaved forests (includes a 
large number of tree species) account for 16.5%, 17.5%, 
24.8%, and 41.2% of the study area, respectively. Among 
them, most Chinese fir-planted forests are pure, even-
aged stands, and there are also mixed forests with Mas-
son pine or broad-leaved trees; most of the Masson pine 
forests are natural forests, of which approximately 60% 

Fig. 1  Study area and distribution of the field plots. a Geographic location of the study area in China, b distribution of plot clusters in three regions 
in the study area, and c locations of field plots in a cluster
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are pure, even-aged stands, and the remaining are mixed 
forests with broad-leaved trees; the broad-leaved forests 
are mainly natural mixed forests. Further insights into 
the study area’s specific characteristics were produced by 
Li et al. (2023).

2.2 � Field plot data
The field plots in the Nanning, eastern, and western 
regions were measured from October 2016 to January 
2017, November 2018 to May 2019, and August 2019 to 
January 2020, respectively. The forests in the study area 
were categorized into four types according to the domi-
nant tree species and species groups: Chinese fir, Mas-
son pine, eucalyptus, and broad-leaved forests. A total 
of 1003 rectangular plots with a size of 30  m × 20  m 
were distributed in clusters over the study area, and 
each was subdivided into four sub-plots with an area of 
15 m × 10 m. All live trees with a DBH (1.3 m above the 
ground) ≥ 5  cm within the sub-plot were measured and 
recorded. Tree height was measured using a Vertex™ IV 
hypsometer (Haglöf, Långsele, Västernorrland, Sweden) 
for three average trees and the tallest tree in each sub-
plot. The VOL was calculated using provincial species-
specific allometric equations (Liao and Huang 1986), 
using BA and mean height as predictors. Table 1 provides 
the summary statistics for the 1003 field plots. Compre-
hensive details regarding plot installation, configuration, 
measurement procedures, and positioning are provided 
in the works of Li et al. (2023).

2.3 � LiDAR data
The LiDAR data were collected in Nanning and the east-
ern and western regions from October 2016 to April 
2017, October 2018 to October 2019, and August 2019 
to January 2020, respectively. The Riegl VQ-1560 and 
the Riegl VQ-1560i laser scanning systems (Riegl Laser 
Measurement Systems GmbH, Horn, Austria) were 
applied to collect LiDAR data in all three regions with 
the same standards. The final average point density was 
5.54 (± 2.14) points m−2. The LiDAR survey flight, sensor 
parameters, and preprocessing method of point clouds 
were described in detail in the works of Li et al. (2023).

Similar to most researchers (da Silva et al. 2020; White 
et al. 2017; Asner et al. 2012; Chen et al. 2012; Treitz et al. 
2012; Tojal et al. 2019; Nilsson et al. 2017), this study used 
all echoes to extract 13 LiDAR-derived metrics. These 
metrics include the mean height of the point clouds 
(Hmean), the standard deviation and the coefficient of 
variation of point height distribution (Hstdev and HCV), 
the 95th height percentile (hp95), canopy closure (CC), 
the 50th and 75th density percentiles (dp50 and dp75), 
the mean of the leaf area density profile (LADmean) and 
their standard deviation (LADstdev) and coefficient of 
variation (LADcv) (Bouvier et al. 2015), and the mean of 
the vertical foliage profile (VFPmean) and their standard 
deviation (VFPstdev) and coefficient of variation (VFPcv) 
(Knapp et  al. 2020). They can be categorized into three 
groups, namely the height-, density-, and vertical struc-
ture-variable groups, each of which accurately depicts 
the 3D structural aspects of the forest canopy. The forest 
attribute and LiDAR metrics of the field plot are available 
online on the ScienceDB repository (Li 2023).

2.4 � Statistical analysis
Based on the total number of field plots for each forest 
type, we created a series of datasets with varying sam-
ple sizes using repeated random sampling. For large-
scale airborne LiDAR-based forest attribute estimation, 
we believed that at least 30 field plots were required. To 
generate a series of datasets with various numbers of 
plots, e.g., 30, 35, …, and the total number of plots, we 
started with a sample size of 30 and increased it by five 
until we reached the total number of plots. To account 
for the large random errors that can occur with random 
sampling, we performed 50 iterations of random sam-
pling for each sample size, resulting in 50 sub-datasets 
for each dataset of a given sample size. For each of the 13 
LiDAR metrics and four forest attributes (DBH, H, BA, 
and VOL) across different sample sizes, we calculated 
their mean and standard deviation. We also examined the 
variation in their mean and standard deviation across dif-
ferent sample sizes using the following equation:

(1)VRx = (xmax − xmin)× 200/(xmax + xmin)

Table 1  Summary statistics for measured field plots data. CV is the coefficient of variation

Forest type Sample size Stem density 
(stem ha−1)

DBH H BA VOL

Mean (cm) CV(%) Mean (m) CV (%) Mean (m2 ha−1) CV (%) Mean (m3 ha−1) CV (%)

Chinese fir 222 683–6083 12.28 27.51 10.88 27.19 31.91 29.34 193.60 46.58

Masson pine 260 350–3967 19.05 28.52 13.79 26.99 27.95 31.71 192.03 46.94

Eucalyptus 269 517–3350 11.27 21.50 16.12 20.03 17.24 34.12 141.91 44.16

Broad-leaved 252 233–4800 13.70 36.86 10.50 27.15 19.64 41.07 111.80 58.85
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where VRx is the variation of the mean or standard vari-
ation of the LiDAR metric or forest attribute; xmax and 
xmin are the maximum and minimum of the mean and 
standard variation of the LiDAR metric or forest attrib-
ute, respectively, over different sample sizes of plots for 
a forest type. In addition, a two-tailed t test was used to 
assess the statistical significance of the differences in the 
means of the LiDAR metrics or forest attributes between 
different numbers of plots and the total number of plots.

2.5 � Model calibration and validation
Over the past two decades, numerous studies have been 
conducted on various forest types and forest attributes 
(e.g., H, DBH, BA, VOL, and AGB), resulting in various 
estimation models (Zolkos et al. 2013; Latifi et al. 2015). 
These models include parametric regression and nonpar-
ametric approaches, with the primary goal of optimizing 
prediction accuracy by maximizing explained variability 
(e.g., R2), minimizing prediction error (e.g., RMSE), and 
reducing systematic bias for specific forest attributes, 
forest types, and study sites (Zolkos et  al. 2013; Næsset 
et al. 2004; Hudak et al. 2008; Penner et al. 2013; White 
et al. 2017). In this study, our objective was to investigate 
the impact of sample size on estimation accuracy and 
to develop simplicity and clarity models. Therefore, we 
focused on parametric models, specifically multivariate 
multiplicative power models known for their flexibility 
(Hollaus et al. 2009).

Using three groups of 13 LiDAR-derived metrics men-
tioned earlier, and a rule-based exhaustive combination 
approach as described by Li et  al. (2023), we obtained a 

total of 86 formulations of the multiplicative power model, 
each consisting of 2–5 variables, to facilitate the estima-
tions of the DBH, H, BA, and VOL.

To achieve the optimal model formulation for predicting 
forest attributes, we randomly selected 70% of the sample 
plots from each forest type to calibrate the model, while the 
remaining 30% were used for validation. Model calibration 
and validation were performed using the Gauss-Newton 
algorithm in the Python software package (Python version 
3.7). We evaluated 86 model formulations and selected the 
best one based on the lowest rRMSE and largest R2 values 
of the validation dataset. The optimal model formulation is 
presented in Table 2 for all forest attributes and types.

To evaluate the robustness of the best model, different 
numbers of plots were used for model calibration, and the 
model was validated using the leave-one-out cross-valida-
tion (LOOCV) approach with R2 and rRMSE statistics. To 
reduce the random errors, we performed 50 repetitions for 
each sample size.

2.6 � Determination of minimum and maximum sample size
For a forest attribute of a forest type, the coefficient of vari-
ation of rRMSE (CVrRMSE) of the predictive model was cal-
culated after 50 repeat iterations of model calibration for 
each sample size. We found that the relationship between 
the CVrRMSE and sample size was best fitted by the follow-
ing logistic regression model:

where n is the sample size; a0 , a1 , and a2 are the model 
parameters. As the sample size increases, CVrRMSE tends 

(2)CVrRMSE(%) = 1/ a0 + a1 × a
n

2

Table 2  Best model formulations for estimating four forest attributes across four forest types using the total number of plots

a0 , a1 , a2,…, and a5 are model parameters

Forest type Attribute Model formulation

Chinese fir Mean diameter at breast height (DBH) (cm) DBHFir = a0hp95
a1CCa2 LADcva3Hcva4dp50a5

Mean stand height (H) (m) HFir = a0hp95
a1CCa2 LADcva3Hstdeva4dp50a5

Basal area (BA) (m2ha−1) BAFir = a0hp95
a1CCa2 LADmeana3Hcva4

Stand volume (VOL) (m3ha−1) VOLFir = a0hp95
a1CCa2LADmeana3Hcva4

Masson pine Mean diameter at breast height (DBH) (cm) DBHPine = a0Hmeana1CCa2 LADmeana3Hcva4

Mean stand height (H) (m) HPine = a0Hmeana1CCa2VFPmeana3Hcva4

Basal area (BA) (m2ha−1) BAPine = a0hp95
a1CCa2VFPmeana3Hcva4dp75a5

Stand volume (VOL) (m3ha−1) VOLPine = a0Hmeana1CCa2 LADmeana3Hcva4dp50a5

Eucalyptus Mean diameter at breast height (DBH) (cm) DBHEucalyptus = a0hp95
a1CCa2 LADstdeva3Hstdeva4dp75a5

Mean stand height (H) (m) HEucalyptus = a0hp95
a1CCa2VFPmeana3Hcva4dp50a5

Basal area (BA) (m2ha−1) BAEucalyptus = a0hp95
a1CCa2VFPstdeva3Hstdeva4dp75a5

Stand volume (VOL) (m3ha−1) VOLEucalyptus = a0hp95
a1CCa2VFPcva3Hcva4dp75a5

Broad-leaved Mean diameter at breast height (DBH) (cm) DBHBroad−leaved = a0Hmeana1CCa2 LADmeana3

Mean stand height (H) (m) HBroad−leaved = a0Hmeana1CCa2VFPmeana3

Basal area (BA) (m2ha−1) BABroad−leaved = a0Hmeana1CCa2VFPstdeva3

Stand volume (VOL) (m3ha−1) VOLBroad−leaved = a0Hmeana1CCa2VFPstdeva3
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to decrease. If CVrRMSE is less than 5%, the model accu-
racy tends to stabilize, and increasing the sample size has 
little effect on improving the model accuracy. Therefore, 
when CVrRMSE reaches less than 5%, the corresponding 
sample size (n) is considered the maximum sample size. 
As the sample sizes for all four forest types in this study 
are large enough, we believe that the model accuracy 
using the total number of plots is the highest accuracy 
achievable in the study area. Accordingly, if the CVrRMSE 
of an estimation model is less than 10%, the model per-
formance is essentially stabilizes, and we consider the 
corresponding sample size as the minimum sample size 
required for this attribute estimation.

3 � Results
3.1 � Influence of sample size on estimation accuracy
The result showed that the mean rRMSE of the esti-
mation models with a sample size of 30 was obviously 
higher than those with the total number of plots, while 
the opposite was true for the mean R2 (Table  3). This 
was true for all attributes of all forest types. Table 3 also 
showed that the rRMSEs of the four attribute estimation 
models for broad-leaved forests were significantly larger 
than those for other forest types, while the R2 was on the 
opposite side.

As the sample size increased from 30 to the total num-
ber of plots, the mean rRMSE of the VOL estimation 
of the Chinese fir forests decreased by 7.89%, and the 
mean R2 increased by 16.89%. Similarly, for the Euca-
lyptus forest plantations, the mean rRMSE decreased by 
13.86%, and the mean R2 increased by 13.40%, as shown 
in Table 3. These results demonstrated that the effects of 
the sample sizes on estimation model performance var-
ied across forest types and attributes. Furthermore, as 
the sample size increased from 30 to the total number 
of plots, the mean rRMSE of all models decreased while 
the mean R2 increased for all forest types, as illustrated 

in Fig. 2. These trends indicated that the accuracy of all 
models improved as the sample size increased.

When the sample size was small, there was a larger 
variation in rRMSE and R2 among the 50 repetitions of 
model calibration and validation. The mean rRMSE was 
also large, while the mean R2 was small. However, as the 
sample sizes increased, the variations in rRMSE and R2 
decreased, and the mean rRMSE decreased while the 
mean R2 increased (Fig. 3). For instance, in the VOL esti-
mation of the Chinese fir forests, with a sample size of 30, 
the mean rRMSE and R2 were 22.04% and 0.756, respec-
tively, ranging from 14.27 to 32.63% and 0.419–0.886, 
respectively. With a sample size of 255, the mean rRMSE 
and R2 were 19.69% and 0.824, respectively, ranging from 
18.92 to 19.93% and 0.816 to 0.839, respectively. It was 
observed that for all models, the coefficient of variation 
in the rRMSE and R2 decreased with increasing sample 
size.

The rRMSE was used as a criterion to evaluate the 
model performance during the model validation proce-
dure. From the 50 repeated model calibrations for each 
sample size, the ten best and ten worst models were iden-
tified based on their rRMSE values. We found two quite 
interesting phenomena in the performance of the ten best 
and ten worst models (Fig. 3). Firstly, as the sample size 
increased, the rRMSE of the ten best models showed an 
increasing trend, and the R2 showed a decreasing trend. 
That is, the model accuracy showed a decreasing trend. 
However, the accuracy of the ten best models was always 
consistently higher than that of all 50 models; the perfor-
mances of the ten worst models were opposite to those of 
the ten best. Secondly, the accuracy of the ten best mod-
els with small sample sizes was always higher than that of 
all 50 models with large sample sizes.

The analysis of the variations in the target variables 
(field-measured attributes) and LiDAR variables (met-
rics) among the ten best and ten worst models revealed 

Table 3  Mean rRMSE and R2 of the four attribute estimations for the four forest types on the validation dataset with a sample size of 
30 and the total number of plots, respectively 

Forest type Sample size VOL BA H DBH

rRMSE (%) R2 rRMSE (%) R2 rRMSE (%) R2 rRMSE (%) R2

Chinese fir 222 22.18 0.761 11.78 0.582 11.78 0.804 16.79 0.617

30 24.08 0.651 19.88 0.422 12.78 0.717 18.62 0.444

Masson pine 260 19.69 0.824 18.62 0.655 10.30 0.854 20.01 0.506

30 22.04 0.756 20.41 0.542 11.72 0.779 22.63 0.295

Eucalyptus 269 19.09 0.811 18.17 0.716 8.95 0.790 11.32 0.714

30 22.16 0.715 20.61 0.608 9.82 0.701 12.51 0.582

Broad-leaved 252 36.16 0.617 29.37 0.484 17.09 0.595 31.16 0.428

30 39.57 0.478 31.01 0.361 19.12 0.415 32.06 0.379



Page 7 of 15Li et al. Annals of Forest Science           (2023) 80:40 	

several trends. Firstly, the mean standard deviations 
(SDs) of the target variables in the ten best models 
were consistently lower than those of all 50 models for 
all sample sizes, while the ten worst models showed 
the opposite result. Secondly, in most sample sizes, the 
ten best models had at least one LiDAR variable with 
a mean SD lower than that of all 50 models, while the 
ten worst models showed the opposite trend. Lastly, 
as the sample size increased, the SDs of both the tar-
get variable and the LiDAR metric in the ten best and 

ten worst models tended to be close to those of all 50 
models. Figure 4 displays the trends in the SDs of the 
measured VOL and the five LiDAR variables used for 
the VOL estimation in the Masson pine forest across 
the ten best and ten worst models and all 50 models.

According to Figs.  3 and 4, we can infer that the 
SDs of the target variables and LiDAR variables in the 
samples are critical factors in determining the model 
accuracy. If the SDs are small, the accuracy is high; oth-
erwise, the accuracy is low.

Fig. 2  The trends of the mean rRMSE and mean R2 of the estimation models of four forest attributes with the increase of sample size: Chinese fir (a), 
Masson pine (b), eucalyptus (c), and broad-leaved (d) forests

Fig. 3  Boxplots of rRMSE (a) and R2 (b) of all 50 models and the ten best and ten worst models of the VOL estimation of the Masson pine forest 
showed decreasing trends of variations in rRMSE and R2 with increasing sample size
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3.2 � Influence of sample size on the LiDAR variables 
and forest attributes

The means of the LiDAR metrics were consistent across 
different sample sizes (30, 35, …, the total number of 
plots), with the general variations (VRmean) ranging from 
less than 1.0% to a maximum of 4.81% found in the LAD-
mean in Chinese fir forests (Table 4). For example, in the 
fir forest, the mean hp95 varied by only 0.91% among 39 
sample sizes of plots, with the maximum and minimum 
means being 12.89 and 12.78, respectively. Variations 

in the eucalyptus and broad-leaved forests were slightly 
smaller than those in the Chinese fir and Masson pine 
forests. The paired t tests also confirmed that there were 
no statistically significant differences (p > 0.05) in the 
means of all LiDAR-derived metrics between different 
sample sizes of plots and the total number of plots in all 
forest types.

The standard deviations (SDs) of the LiDAR metrics 
did not vary much among the different numbers of plots 
in the four forest types. However, their variations were 

Fig. 4  Trends of the standard deviations (SDs) for the measured VOL and LiDAR-derived metrics used to estimate VOL of the Masson pine forest 
as the sample size increased in all 50 models and the ten best and ten worst models: measured VOL (a), Hmean (b), Hcv (c), CC (d), dp50 (e), 
and LADmean (f)

Table 4  Variation in the mean (VRmean, %) and standard deviation (VRSD, %) of LiDAR-derived metrics among the different number of 
plots in four types of forests

Forest type Statistic hp95 Hmean Hstdev Hcv CC dp50 dp75 LADmean LADsdev LADcv VFPmean VFPsdev VFPcv

Chinese fir VRmean 0.91 0.97 1.05 0.77 0.36 1.00 1.94 4.81 2.72 0.55 0.91 0.68 0.59

VRSD 1.65 3.92 2.15 3.12 6.85 5.34 3.30 16.72 10.38 0.84 2.78 0.73 2.20

Masson pine VRmean 0.82 0.83 1.29 0.53 0.25 0.67 1.34 3.73 4.41 0.41 0.89 0.44 2.86

VRSD 2.04 1.52 1.31 2.32 2.79 2.11 0.72 11.04 10.44 2.68 4.70 2.41 1.82

Eucalyptus VRmean 0.71 0.67 1.16 0.46 0.23 0.33 0.93 2.14 3.66 1.13 0.81 0.37 0.56

VRSD 5.41 1.87 2.58 3.12 1.21 3.10 2.64 6.55 6.48 1.85 1.62 2.02 1.35

Broad-leaved VRmean 0.95 0.88 0.99 0.35 0.30 0.52 1.62 1.26 1.41 0.47 1.34 0.44 0.75

VRSD 2.25 2.08 1.93 2.43 4.38 10.15 2.03 3.08 8.64 1.13 1.42 1.06 1.20
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larger than those observed for the means. The varia-
tions of the SD (VRSD) of most LiDAR metrics were less 
than 5.0%, except for the largest variation, which reached 
16.72% found in the LADmean in Chinese fir forests. 
Overall, small variations in the SDs of LiDAR metrics 
were found in the eucalyptus forests, followed by the 
broad-leaved and Masson pine forests, and a large vari-
ation was found in the Chinese fir forests (Table  4). As 
the sample size increased, the SDs of all 13 LiDAR met-
rics showed decreasing trends, and their relative differ-
ences (ΔSD) between the different sample sizes and the 
total number of plots also showed decreasing trends in 
all four forest types (Fig. 5). The fastest decreases trends 
were found in the eucalyptus and broad-leaved forests; as 
the sample sizes reached 110 and 115, respectively, they 
were less than 1% for most LiDAR metrics. In contrast, in 
the Masson pine and Chinese fir forests, the ΔSD was less 
than 1% only when the sample sizes reached 145 and 160, 
respectively.

The means of the field-measured attributes among the 
different sample sizes were also close to each other in all 
forest types, with their variations not exceeding 1.5%, and 
there were no statistically significant differences (p > 0.05) 
between the means of forest attributes of the different 
sample sizes and those of the total number of plots in all 

forest types. The variations of the means and the stand-
ard deviations of the forest attributes across the different 
sample sizes were similar to those of the LiDAR metrics, 
but their variations were significantly smaller than those 
of the latter. As the sample size increased, the relative dif-
ferences in the SDs of forest attributes between the differ-
ent sample sizes and the total number of plots in all forest 
types also decreased rapidly (Fig. 6).

The trends in the LiDAR-derived metrics and field-
measured attributes with changes in sample size could 
be summarized as follows: Firstly, the means of LiDAR 
metrics and forest attributes were close to each other 
among different sample sizes, with no statistically sig-
nificant differences (p > 0.05) observed between the dif-
ferent sample sizes and the total number of plots. While 
their standard deviations were also close to each other, 
their variations were obviously larger than those in 
their means. Secondly, the variations in the means and 
standard deviations of the LiDAR metrics in eucalyptus 
and broad-leaved forests were slightly lower than those 
in Chinese fir and Masson pine forests. Lastly, with the 
increases in the sample sizes, there were rapid decreases 
in the relative differences observed in the means and 
standard deviations of the LiDAR metrics and field-
measured attributes between different sample sizes and 

Fig. 5  The relative differences of the standard deviations (ΔSD, %) of 13 LiDAR-derived metrics between the different sample sizes and the total 
number of plots showed decreasing trends in all four forest types: Chinese fir (a), Masson pine (b), eucalyptus (c), and broad-leaved (d) forests
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the total number of plots. However, the decreasing trends 
varied across forest types.

3.3 � The minimum and maximum sample sizes required 
for forest attribute estimation

The logistic regression was used to calibrate the relation-
ship between the coefficient of variation of the rRMSE 
(CVrRMSE) of forest attribute estimation models and the 
sample size. The results indicated that the variance in R2 
for the calibrated logistic regressions ranged from 0.943 
to 0.991, with all rRMSEs below 15%, as demonstrated in 
Fig.  7. These logistic regressions show that the CVrRMSE 
of all forest attribute estimation models decreases with 
increasing sample size.

Based on the logistic regression model described in 
Fig.  7, we were able to determine the appropriate sam-
ple size for forest attribute estimation for a given forest 
type. Specifically, we could set the CVrRMSE to be either 
10% or 5%, which represented the minimum sample size 
required to achieve acceptable accuracy and the maxi-
mum sample size required to achieve stable accuracy, 
respectively. These thresholds varied across forest attrib-
utes and forest types. See Table 5 for specific details on 
the minimum and maximum sample sizes required for 
different forest attributes across all four forest types.

The minimum sample size varied significantly across 
different forest attributes and forest types. The VOL esti-
mation required the largest minimum sample size, rang-
ing from 55 to 110, and the DBH estimation required the 
smallest minimum sample size, ranging from 50 to 70. 
For the estimation of all four forest attributes, the largest 
minimum sample sizes were required for the Chinese fir 

forest, ranging from 60 to 110, and the smallest for the 
broad-leaved forest, ranging from 55 to 70. If four for-
est attributes were estimated simultaneously, the mini-
mum sample sizes required for fir, pine, eucalyptus, and 
broad-leaved forests were 110, 80, 85, and 70, respec-
tively (Table  5). The maximum sample sizes also varied 
considerably across different forest attributes and forest 
types; however, their ranges of variation were smaller 
than those in the minimum sample sizes.

Most differences in rRMSEs between the models cali-
brated by the minimum sample size and the total number 
of plots were less than 5%, with a maximum difference 
of 6.12%. The differences between the rRMSEs of the 
models calibrated by the maximum sample sizes and 
those calibrated by the total number of plots were slight, 
mostly less than 1%, with a maximum difference of not 
more than 3%. These results indicated that increasing the 
number of sample plots beyond the maximum sample 
size would have minimal impact on model accuracy.

4 � Discussion
The cost and efficiency of field plot measurements, as 
well as the accuracy of forest attribute estimation, are 
crucial factors that need to be taken into account in air-
borne LiDAR forest applications. In this study, we have 
investigated the effect of sample size on the performance 
of forest attribute estimation models and determined 
the minimum sample sizes required to estimate four for-
est attributes for four forest types in a large subtropical 
region. No previous study has been reported with such a 
large extent of the study area, the complexity of the forest 
context, the large number of sample plots, and so many 

Fig. 6  The relative differences of the standard deviations (ΔSD, %) of field-measured attributes between the different sample sizes and the total 
number of plots showed decreasing trends in all four forest types: Chinese fir (a), Masson pine (b), eucalyptus (c), and broad-leaved (d) forests
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forest attributes. The findings of this study have univer-
sal reference value for optimizing technology schemes for 
airborne LiDAR forest applications.

4.1 � Cause for sample size affects the estimation accuracy
Some previous studies have demonstrated that increas-
ing the sample size can improve the accuracy of airborne 
LiDAR-based forest attribute estimations (Gobakken and 
Næsset 2008; Junttila et al. 2013), which is supported by 
our study. However, to the best of our knowledge, few 
studies have addressed the mechanism by which sample 
size affects estimation accuracy.

This study revealed that if sample plots are installed 
based on unreliable historical forest inventory data 
(which is a common method in large-scale airborne 
LiDAR applications) and the sample size is small, the 
uncertainty in the relationship between field-measured 
attributes and LiDAR variables in the sample plots is 
high, resulting in a large variation in the model accuracy 
(rRMSE) and explanatory power (R2) of the model varia-
bles, with a large mean rRMSE and a small mean R2, indi-
cating low model accuracy. As the sample size increases, 
the sample plots become more representative of the pop-
ulation, and the uncertainty in the relationship between 

Fig. 7  Logistic regression curves showing the relationships between the CVrRMSE of forest attributes estimation models and the sample sizes of four 
types of forest: Chinese fir (a), Masson pine (b), eucalyptus (c), and broad-leaved (d) forests

Table 5  Minimum (Min) and maximum (Max) numbers of plots required for estimating four forest attributes across four forest types to 
achieve acceptable and stable accuracy, respectively

Forest type VOL BA H DBH All attributes

Min Max Min Max Min Max Min Max Min Max

Chinese fir 110 170 75 130 85 145 60 110 110 170

Masson pine 80 155 65 125 70 130 65 130 80 155

Eucalyptus 80 165 85 170 80 140 60 120 85 170

Broad-leaved 55 120 60 130 70 120 70 115 70 130
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field-measured attributes and LiDAR variables gradually 
decreases. The variations of rRMSE and R2 in the model 
gradually decrease, the mean rRMSE decreases, the mean 
R2 increases, and the model accuracy is high (Fig. 3).

We found that the improvement in the accuracy of for-
est attribute estimation with increasing sample size was 
due to a gradual decrease in the standard deviation of 
the target attributes and LDAR variables (Figs. 4–6). This 
finding also effectively explains why LiDAR-based strati-
fied selection of plots can reduce the sample size and has 
instructive significance for other plot selection methods 
such as target sampling and forest attribute estimation 
following LiDAR-based stand stratification. Our study 
suggests that high model accuracy can be achieved even 
if the sample sizes are small (e.g., 30) if the sample plots 
are selected properly (Fig.  3). Thus, model accuracy is 
closely related to sample selection (Maltamo et al. 2011), 
and increasing the sample size is not always beneficial 
for improving model accuracy. The findings of this study 
provide useful guidance for the efficient and accurate use 
of LiDAR data for forest attribute estimation.

4.2 � Heterogeneity of the 3D canopy structure 
and the effect of sample size

The effect of sample size on the accuracy of forest attrib-
ute estimation varies by forest type. In broad-leaved for-
ests, increasing the sample size led to a rapid decrease 
in rRMSE and an increase in R2 for all attribute estima-
tions, indicating a rapid improvement in model accuracy. 
In Chinese fir forests, the changes in rRMSE and R2 were 
slow with increasing the sample size, leading to a slow 
improvement in model accuracy. The changes in RMSE 
and R2 for four attribute estimations in Masson pine and 
eucalyptus forests fall between those in Chinese fir and 
broad-leaved forests. (Fig.  2). As a result, the minimum 
sample size required for forest attribute estimation was 
smallest in broad-leaved forests, largest in Chinese fir 
forests, and intermediate for Masson pine and eucalyptus 
forests (Table 5).

Differences in the 3D canopy structure due to differ-
ences in the biophysical characteristics of different for-
est types are likely to be the main contributors to these 
results. Excluding the shrub and herbaceous layers, the 
tree layers of Chinese fir, Masson pine, eucalyptus, and 
broad-leaved forests in this study have three, four, three, 
and five classes of vertical forest structures, respectively 
(Zhou and Li 2023). Two classes of vertical forest struc-
tures (VFS) (essentially equal to single- and multi-sto-
ried forests) were obtained for all forest types following 
a systematic clustering analysis using vertical structure 
parameters. The proportions of these two VFS classes in 
Chinese fir, Masson pine, eucalyptus, and broad-leaved 
forests are 48.6% and 51.4%, 57.3% and 42.7%, 78.8% and 

21.2%, and 16.7% and 83.3%, respectively (unpublished 
manuscript by Li et  al.). Multi-storied forests predomi-
nate in broad-leaved forests, whereas single- and multi-
storied forests are closely weighted in Chinese fir forests. 
Chinese fir forests have the highest heterogeneity and the 
greatest variation in forest structure, and they require the 
maximum number of sample plots to accurately repre-
sent the population. Broad-leaved forests have the lowest 
heterogeneity and the least variation in forest structure, 
and a small number of sample plots are likely to be rep-
resentative of the population. Although broad-leaved for-
ests have low accuracy in estimating forest attributes due 
to the large number of tree species included, they have 
large differences in stem- and stand-form factors and for-
est structure, and the statistical relationship between the 
LiDAR variables and the measured attributes is relatively 
weak. The heterogeneities in the vertical forest structure 
of Masson pine and eucalyptus forests are intermediate 
between those of Chinese fir and broad-leaved forests, as 
is the minimum sample size required.

The effect of sample size on estimation accuracy varies 
across different forest attributes (Fig.  7). The minimum 
sample size required is the largest for the VOL estimation 
in the Chinese fir forest, followed by that for the Mas-
son pine and eucalyptus forests. In contrast, the DBH, H, 
and BA estimations required relatively smaller minimum 
sample sizes, which were similar to each other (Table 5). 
Moreover, the accuracy of the VOL estimation was gen-
erally lower than that of the DBH, H, and BA estimations 
(Table  3). We hypothesize that this might be attributed 
to the variation in forest attributes. The VOL, which is 
related to stand height and density, is a two-dimensional 
variable with the largest coefficient of variation, while 
the DBH, H, and BA are one-dimensional variables with 
small coefficients of variation (Table 1). It is evident that 
a large number of sample plots are required to accu-
rately represent a population with highly variable forest 
attributes. However, the sample size required for diverse 
forest attribute estimation in broad-leaved forests does 
not comply with the above assumptions. Therefore, 
additional studies are needed to examine the effect of 
sample size on the accuracy of different forest attribute 
estimations.

4.3 � Determining the minimum and maximum sample sizes
The minimum sample size required for accurate estima-
tion of forest attributes varies significantly depending on 
various factors, including the forest attribute itself, the 
forest type or tree species, the extent of the study area, 
the complexity of the forest context, the modeling meth-
ods, and the sampling strategies. Studies by da Silva et al. 
(2020) and Stereńczak et al. (2018) suggested that a mini-
mum of 63 and 300 field plots were necessary for VOL 
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estimations in eucalyptus plantations and Scots pine-
dominant forests, respectively. However, existing stud-
ies for airborne LiDAR-based forest attribute estimation 
rarely exceed 200 field plots (Fassnacht et al. 2014).

Airborne LiDAR forest attribute estimations need to 
meet an acceptable level of accuracy or bias, as high-
lighted by previous studies (Jakubowski et  al. 2013; 
Montagnoli et  al. 2015). Some studies define acceptable 
accuracy as when the rRMSE or prediction error is less 
than a given value (da Silva et al. 2020; Silva et al. 2017; 
Lin et  al. 2016). However, the present study found that 
the estimation accuracy varied with forest attributes 
and forest types (Table  3 and Fig.  2), making it difficult 
to establish a single criterion for acceptable accuracy 
across different forest attributes and forest types. Table 3 
and Fig.  2 also demonstrated that the larger the sample 
size, the higher the estimation accuracy. As the num-
ber of sample plots in this study was large enough, we 
believed that the accuracy of the forest attribute estima-
tions obtained by using all sample plots was the highest 
or close to the highest. Based on this consideration, we 
believed that it was a scientific and reasonable method 
to determine the minimum and maximum sample sizes 
based on the coefficient of variation of the rRMSE of the 
estimation model. Therefore, this study presented the 
minimum number of sample plots required for opera-
tionalizing ALS-based large-scale forest inventory in 
subtropical regions, and these results were expected to 
provide a reference for developing technical schemes.

Using a rule-based exhaustive approach, we developed 
multiplicative power models for estimating four forest 
attributes across four forest types based on 13 LiDAR-
derived metrics. However, there are numerous other 
models for estimating forest attributes using LiDAR data, 
and additional modeling tests are necessary to under-
stand the impact of sample size on estimation accuracy. 
Additionally, a stratified approach based on species and 
maturity class (e.g., young and mature forests) is an effec-
tive means of enhancing accuracy (Hauglin et  al. 2021), 
and exploring the influence of sample size on estima-
tion accuracy following such stratification would also be 
worthwhile.

5 � Conclusions
In this study, we investigated the impact of the number 
of field plots on the accuracy of airborne LiDAR-based 
estimations of forest inventory attributes. Subsequently, 
we determined the minimum sample size required to 
estimate the four forest attributes across four forest 
types in a large subtropical region. As the sample size 
increased, the estimation accuracy improved for all 
forest attributes and forest types. We preliminary con-
firmed that this could attributed to a decrease in the 

standard deviation of the target attributes and LiDAR 
variables with increasing sample size. We observed 
that the sample size had a variable impact on the esti-
mation accuracy for different forest attributes and 
forest types, and the minimum sample size varied sig-
nificantly across forest attributes and forest types. We 
basically believed that heterogeneity in the forest struc-
ture and variability in the field-measured attributes 
were the main factors affecting the required minimum 
sample size. The higher the heterogeneity of the verti-
cal forest structure (e.g., Chinese fir forests), the larger 
the minimum sample sizes required, and conversely, 
the lower the heterogeneity (e.g., broad-leaved forests), 
the smaller the minimum sample sizes required. The 
smaller the variation in field-measured attributes (e.g., 
DBH), the smaller the minimum sample sizes needed; 
and conversely, the greater the variation (e.g., VOL), 
the larger the minimum sample sizes needed.

The findings of this study will be useful in optimizing 
the technical schemes to improve the cost-effectiveness 
of operational airborne LiDAR-assisted forest resource 
inventory in large subtropical areas. However, the con-
clusions of this study still need to be validated by other 
predictive models, such as machine learning models. 
Additionally, the minimum sample size required needs 
to be further studied when using LiDAR data for assisted 
sampling. Similarly, if stratification-based estimations are 
applied using tree species and age classes, vertical struc-
ture, etc., additional research will be required to deter-
mine the minimum sample size.

Acknowledgements
This project is a part of the project "the Fifth Forest Management Inventory 
of Guangxi Zhuang Autonomous Region (5th FMI-GX, 2017–2020)", China. The 
airborne LiDAR data acquisition and prepossessing and field data measure-
ment were founded by the Finance Department of the Guangxi Zhuang 
Autonomous Region. The authors would like to express their sincere gratitude 
to Chengling Yang and Yao Liang from the Guangxi Forest Inventory and 
Planning Institute (FIPI-GX) and 120 field crews who worked on the field 
measurements. The authors also thank Guangxi 3D Remote Sensing Engineer-
ing Technology Co., Ltd.; Feiyan Aero Remote Sensing Technology Co., Ltd.; 
Zhongke Remote Sensing Technology Group Co., Ltd.; and Guangzhou Jian-
tong Surveying and Mapping Geographic Information Technology Co., Ltd., 
which were responsible for the acquisition and preprocessing of the airborne 
LiDAR data utilized herein. We acknowledge the anonymous reviewers and 
the editor for their insightful suggestions.

Code availability
The codes developed for the current study are available from the correspond-
ing author on reasonable request.

Authors’ contributions
Conceptualization, CL and HD; methodology, CL and ZY; calculations, ZY, 
XZ, and MZ; data collection and analysis, CL and ZY; writing—original draft 
preparation, ZY and CL; writing—review and editing, CL; project administra-
tion, CL; funding acquisition, CL and HD. All authors have read and agreed to 
the published version of the manuscript.

Funding
This study received financial support from the Department of Forestry of 
Guangxi Zhuang Autonomous Region, China (GXLYKJ2016-001).



Page 14 of 15Li et al. Annals of Forest Science           (2023) 80:40 

Availability of data and materials
The data that support the findings of this study are available at https://​doi.​
org/​10.​57760/​scien​cedb.​11884.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors gave their informed consent to this publication and its content.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Forestry College, Guangxi University, 100 East Daxue Rd., Nanning 530004, 
China. 2 Guangxi Forest Inventory & Planning Institute, 14 Zhonghua Rd., Nan-
ning 530011, China. 3 Guangxi Natural Resources Vocational and Technical Col-
lege, 25, Airport Ave., Fushui 532199, China. 4 School of Computer, Electronic 
and Information, Guangxi University, 100 East Daxue Rd., Nanning 530004, 
China. 

Received: 30 October 2022   Accepted: 12 October 2023

References
Adnan S, Maltamo M, Coomes DA, Valbuena R (2017) Effects of plot size, stand 

density, and scan density on the relationship between airborne laser 
scanning metrics and the Gini coefficient of tree size inequality. Can J For 
Res 47:1590–1602. https://​doi.​org/​10.​1139/​cjfr-​2017-​0084

Asner GP, Mascaro J, Muller-Landau HC, Vieilledent G, Vaudry R, Rasamoelina 
M, Hall JS, van Breugel M (2012) A universal airborne LiDAR approach for 
tropical forest carbon mapping. Oecologia 168:1147–1160. https://​doi.​
org/​10.​1007/​s00442-​011-​2165-z

Bouvier M, Durrieu S, Fournier RA, Renaud J-P (2015) Generalizing predictive 
models of forest inventory attributes using an area-based approach with 
airborne LiDAR data. Remote Sens Environ 156:322–334. https://​doi.​org/​
10.​1016/j.​rse.​2014.​10.​004

Chen Q, Laurin GV, Battles JJ, Saah D (2012) Integration of airborne lidar and 
vegetation types derived from aerial photography for mapping above-
ground live biomass. Remote Sens Environ 121:108–117. https://​doi.​org/​
10.​1016/j.​rse.​2012.​01.​021

da Silva VS, Silva CA, Mohan M, Cardil A, Rex FE, Loureiro GH, de Almeida DRA 
et al (2020) Combined impact of sample size and modeling approaches 
for predicting stem volume in Eucalyptus spp. forest plantations using 
field and LiDAR Data. Remote Sens 12:1438. https://​doi.​org/​10.​3390/​
rs120​91438

Dube T, Sibanda M, Shoko C, Mutanga O (2017) Stand-volume estimation 
from multi-source data for coppiced and high forest Eucalyptus spp. 
silvicultural systems in KwaZulu-Natal, South Africa. ISPRS J Photogramm 
Remote Sen 132:162–169. https://​doi.​org/​10.​1016/j.​isprs​jprs.​2017.​09.​001

Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B (2014) 
Importance of sample size, data type and prediction method for remote 
sensing-based estimations of aboveground forest biomass. Remote Sens 
Environ 154:102–114. https://​doi.​org/​10.​1016/j.​rse.​2014.​07.​028

Gobakken T, Næsset E (2008) Assessing effects of laser point density, ground 
sampling intensity, and field sample plot size on biophysical stand 
properties derived from airborne laser scanner data. Can J For Res 
38:1095–1109. https://​doi.​org/​10.​1139/​X07-​219

Gobakken T, Næsset E (2009) Assessing effects of sample plot positioning 
errors on biophysical stand properties derived from airborne laser scan-
ner data. Can J For Res 39:1036–1052. https://​doi.​org/​10.​1139/​X09-​025

Grafströn A, Ringvall AH (2013) Improving forest field inventories by using 
remote sensing in novel sampling designs. Can J For Res 43:1015–1022. 
https://​doi.​org/​10.​1139/​cjfr-​2013-​0123

Hauglin M, Rahlf J, Schumacher J, Astrup R, Breidenbach J (2021) Large scale 
mapping of forest attributes using heterogeneous sets of airborne laser 
scanning and National Forest Inventory data. For Ecosyst 8:65. https://​doi.​
org/​10.​1186/​s40663-​021-​00338-4

Hawbaker T, Keuler N, Lesak A, Gobakken T, Contrucci K, Radeloff V (2009) 
Improved estimates of forest vegetation structure and biomass with a 
LiDAR-optimized sampling design. J Geophys Res 114(4):1–11. https://​
doi.​org/​10.​1029/​2008J​G0008​70

Hernández-Stefanoni JL, Reyes-Palomeque G, Castillo-Santiago MÁ, George-
Chacón SP, Huechacona-Ruiz AH, Tun-Dzul F, Rondon-Rivera D, Dupuy JM 
(2018) Effects of sample plot size and GPS location errors on above-
ground biomass estimates from LiDAR in tropical dry forests. Remote 
Sens 10:1586. https://​doi.​org/​10.​3390/​rs101​01586

Hollaus M, Wagner W, Schadauer K, Maier B, Gabler K (2009) Growing stock 
estimation for alpine forests in Austria: a robust lidar-based approach. 
Can J For Res 39:1387–1400. https://​doi.​org/​10.​1139/​X09-​042

Hudak AT, Crookston NL, Evans JS, Hall DE, Falkowski MJ (2008) Nearest neigh-
bour imputation of species-level, plot-scale forest structure attributes 
from LiDAR data. Remote Sens Environ 112(5):2232–2245. https://​doi.​org/​
10.​1016/j.​rse.​2007.​10.​009

Ioki K, Imanishi J, Sasaki T, Morimoto Y, Kitada K (2010) Estimating stand 
volume in broad-leaved forest using discrete-return LiDAR: plot-
based approach. Landsc Ecol Eng 6:29–36. https://​doi.​org/​10.​1007/​
sl1355-​009-​0077-4

Jakubowski MK, Guo Q, Kelly M (2013) Tradeoffs between lidar pulse density 
and forest measurement accuracy. Remote Sens Environ 130:245–253. 
https://​doi.​org/​10.​1016/j.​rse.​2012.​11.​024

Jarron LR, Coops NG, MacKenzie WH, Tompalski P (2020) Detection of sub-
canopy forest structure using airborne LiDAR. Remote Sens Environ 
244:111770. https://​doi.​org/​10.​1016/j.​rse.​2020.​111770

Jensen JLR, Humes KS, Conner T, Williams CJ, DeGroot J (2006) Estimation of 
biophysical characteristics for highly variable mixed-conifer stands using 
small-footprint lidar. Can J For Res 36:1129–1138. https://​doi.​org/​10.​1139/​
x06-​007

Junttila V, Finley AO, Bradford JB, Tuomo Kauranne T (2013) Strategies for mini-
mizing sample size for use in airborne LiDAR-based forest inventory. For-
est Ecol Manag 292:75–85. https://​doi.​org/​10.​1016/j.​foreco.​2012.​12.​019

Knapp N, Fischer R, Cazcarra-Bes V, Huth A (2020) Structure metrics to general-
ize biomass estimation from Lidar across forest types from different 
continents. Remote Sens Environ 237:111597. https://​doi.​org/​10.​1016/j.​
rse.​2019.​111597

Latifi H, Fassnacht FE, Hartig F, Berger C, Hernández J, Corvalán P, Koch B (2015) 
Stratified aboveground forest biomass estimation by remote sensing 
data. Int J Appl Earth Obs Geoinf 38:229–241. https://​doi.​org/​10.​1016/j.​
jag.​2015.​01.​016

Li C, Chen Z, Zhou X, Zhou M, Li Z (2023) Generalized models for subtropical 
forest inventory attribute estimations using a rule-based exhaustive com-
bination approach with airborne LiDAR-derived metrics. Gisci Remote 
Sen 60(1):2194601. https://​doi.​org/​10.​1080/​15481​603.​2023.​21946​01

Li C (2023) Plot data of forest attribute and LiDAR metrics. https://​doi.​org/​10.​
57760/​scien​cedb.​11884

Liao Z, Huang D (1986) Forest inventory handbook of Guangxi, China. Forestry 
Department of Guangxi Zhuang Autonomous Region, Nanning

Lin C, Thomson G, Popescu SC (2016) An IPCC-Compliant technique for forest 
carbon stock assessment using airborne LiDAR-derived tree metrics and 
competition index. Remote Sens 8:528. https://​doi.​org/​10.​3390/​rs806​
0528

Lombardi F, Marchetti M, Corona P, Merlini P, Chirici G, Tognetti R, Burrascano S, 
Alivernini A, Puletti N (2015) Quantifying the effect of sampling plot size 
on the estimation of structural indicators in old-growth forest stands. For 
Ecol Manage 346:89–97. https://​doi.​org/​10.​1016/j.​foreco.​2015.​02.​011

Luo SZ, Wang C, Zhang GB, Xi XH, Li GC (2013) Forest leaf area index (LAI) 
estimation using airborne discrete-return LiDAR data. Chin J Geophys-CH 
56(3):233–243. https://​doi.​org/​10.​1002/​cjg2.​20024

Maltamo M, Eerikainen K, Packalen P, Hyyppa J (2006) Estimation of stem 
volume using laser scanning-based canopy height metrics. Forestry 
79(2):217. https://​doi.​org/​10.​1093/​fores​try/​cpl007

Maltamo M, Bollandså OM, Næset E, Gobakken T, Packalén P (2011) Different 
plot selection strategies for field training data in ALS-assisted forest 
inventory. Forestry 84(1):23–31. https://​doi.​org/​10.​1093/​fores​try/​cpq039

https://doi.org/10.57760/sciencedb.11884
https://doi.org/10.57760/sciencedb.11884
https://doi.org/10.1139/cjfr-2017-0084
https://doi.org/10.1007/s00442-011-2165-z
https://doi.org/10.1007/s00442-011-2165-z
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2012.01.021
https://doi.org/10.1016/j.rse.2012.01.021
https://doi.org/10.3390/rs12091438
https://doi.org/10.3390/rs12091438
https://doi.org/10.1016/j.isprsjprs.2017.09.001
https://doi.org/10.1016/j.rse.2014.07.028
https://doi.org/10.1139/X07-219
https://doi.org/10.1139/X09-025
https://doi.org/10.1139/cjfr-2013-0123
https://doi.org/10.1186/s40663-021-00338-4
https://doi.org/10.1186/s40663-021-00338-4
https://doi.org/10.1029/2008JG000870
https://doi.org/10.1029/2008JG000870
https://doi.org/10.3390/rs10101586
https://doi.org/10.1139/X09-042
https://doi.org/10.1016/j.rse.2007.10.009
https://doi.org/10.1016/j.rse.2007.10.009
https://doi.org/10.1007/sl1355-009-0077-4
https://doi.org/10.1007/sl1355-009-0077-4
https://doi.org/10.1016/j.rse.2012.11.024
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1139/x06-007
https://doi.org/10.1139/x06-007
https://doi.org/10.1016/j.foreco.2012.12.019
https://doi.org/10.1016/j.rse.2019.111597
https://doi.org/10.1016/j.rse.2019.111597
https://doi.org/10.1016/j.jag.2015.01.016
https://doi.org/10.1016/j.jag.2015.01.016
https://doi.org/10.1080/15481603.2023.2194601
https://doi.org/10.57760/sciencedb.11884
https://doi.org/10.57760/sciencedb.11884
https://doi.org/10.3390/rs8060528
https://doi.org/10.3390/rs8060528
https://doi.org/10.1016/j.foreco.2015.02.011
https://doi.org/10.1002/cjg2.20024
https://doi.org/10.1093/forestry/cpl007
https://doi.org/10.1093/forestry/cpq039


Page 15 of 15Li et al. Annals of Forest Science           (2023) 80:40 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

Maltamo M, Packalen P (2014) Species-specific management inventory in 
Finland. Chapter 12 in Maltamo M, Næset E, Vauhkonen J (eds) Forestry 
applications of airborne laser scanning: concepts and case studies. 
Springer, Dordrecht. p 464

Montagnoli A, Fusco S, Terzaghi M, Kirschbaum A, Pflugmacher D, Cohen WB, 
Scippa GS, Chiatante D (2015) Estimating forest aboveground biomass by 
low density lidar data in mixed broadleaved forests in the Italian Pre-Alps. 
For Ecosyst 2:10. https://​doi.​org/​10.​1186/​s40663-​015-​0035-6

Næsset E (2002) Predicting forest stand characteristics with airborne scanning 
laser using a practical two-stage procedure and field data. Remote Sens 
Environ 80(1):88–99. https://​doi.​org/​10.​1016/​S0034-​4257(01)​00290-5

Næsset E (2004) Practical large-scale forest stand inventory using a small 
airborne scanning laser. Scand J For Res 19:164–179. https://​doi.​org/​10.​
1080/​02827​58031​00192​57

Næsset E, Bjerknes K-O (2001) Estimating tree heights and number of stems 
in young forest stands using airborne laser scanner data. Remote Sens 
Environ 78:328–340

Næsset E, Gobakken T, Holmgren J, Hyyppa H, Hyyppa J, Maltamo M, Nilsson 
M, Olsson H, Persson A, Soderman U (2004) Laser scanning of forest 
resources: the nordic experience. Scand J For Res 19:482–499. https://​doi.​
org/​10.​1080/​02827​58041​00195​53

Næsset E, Gobakken T, Solberg S, Gregoire TG, Nelson R, Ståhl Hl GR, Weydahl 
D (2011) Model-assisted regional forest biomass estimation using LiDAR 
and InSAR as auxiliary data: a case study from a boreal forest area. Remote 
Sens Environ 115:3599–3614. https://​doi.​org/​10.​1016/j.​rse.​2011.​08.​021

Næsset E (2015) Area-based inventory in Norway - from innovation to an 
operational reality. Chapter 11 in Maltamo M, Næset E, Vauhkonen J (eds) 
Forestry applications of airborne laser scanning: concepts and case stud-
ies. Springer, Dordrecht, p 464

Nilsson M, Nordkvist K, Jonzén J, Lindgren N, Axensten P, Wallerman J, Egberth 
M, Larsson S, Nilsson L, Eriksson J, Olsson H (2017) A nationwide forest 
attribute map of Sweden predicted using airborne laser scanning data 
and field data from the National Forest Inventory. Remote Sens Environ 
194:447–454. https://​doi.​org/​10.​1016/j.​rse.​2016.​10.​022

Novo-Fernández A, Barrio-Anta M, Recondo C, Cámara-Obregón A, López-
Sánchez CA (2019) Integration of national forest inventory and nation-
wide airborne laser scanning data to improve forest yield predictions 
in North-Western Spain. Remote Sens 11:1693. https://​doi.​org/​10.​3390/​
rs111​41693

Penner M, Pitt DG, Woods ME (2013) Parametric vs. nonparametric LiDAR 
models for operational forest inventory in boreal Ontario. Can J Remote 
Sens 39(5):426–443. https://​doi.​org/​10.​5589/​m13-​049

Ruiz LA, Hermosilla T, Mauro F, Godino M (2014) Analysis of the influence of 
plot size and LiDAR density on forest structure attribute estimates. Forests 
5:936–951. https://​doi.​org/​10.​3390/​f5050​936

Silva CA, Klauberg C, Hubdak AT, Vierling LA, Fennema SJ, Corte PD (2017) 
Modeling and mapping basal area of Pinus taeda L. plantation using 
airborne LiDAR data. An Acad Bras Cienc 89(3):1895–1905. https://​doi.​
org/​10.​1590/​0001-​37652​01720​160324

Stereńczak K, Lisańczuk M, Parkitna K, Mitelsztedt K, Mroczek P, Miścicki S 
(2018) The influence of number and size of sample plots on model-
ling growing stock volume based on airborne laser Scanning. Drewno 
61(201):5–22. https://​doi.​org/​10.​12841/​wood.​1644-​3985.​D11.​04

Strunk J, Temesgen H, Andersen H-E, Flewelling JP, Madsen L (2012) Effects 
of lidar pulse density and sample size on a model-assisted approach to 
estimate forest inventory variables. Can J Remote Sens 38(5):644–654 
(http://​pubs.​casi.​ca/​journ​al/​cjrs)

Thomas V, Treitz P, McCaughey J, Morrison I (2006) Mapping stand-level for-
est biophysical variables for a mixed wood boreal forest using lidar: an 
examination of scanning density. Can J For Res 36:34–47. https://​doi.​org/​
10.​1139/​x05-​230

Tojal L-T, Bastarrika A, Barrett B, Espeso JMS, Lopez-Guede JM, Graña M (2019) 
Prediction of aboveground biomass from low-density LiDAR data: valida-
tion over P. radiate data from a region north of Spain. Forests 10:819. 
https://​doi.​org/​10.​3390/​f1009​0819

Treitz P, Lim K, Woods M, Pitt D, Nesbitt D, Etheridge D (2012) LiDAR sampling 
density for forest resource inventories in Ontario, Canada. Remote Sens 
4:830–848. https://​doi.​org/​10.​3390/​rs404​0830

Turner R, Goodwin N, Friend J, Mannes D, Rombouts J, Haywood A (2011) 
A national overview of airborne lidar applications in Australian forest 

agencies. In: Proceedings SilviLaser 2011. 16–19 October 2011, Hobart, 
Tasmania, Australia. pp 13

Watt P, Watt MS (2013) Development of a national model of Pinus radiata 
stand volume from lidar metrics for New Zealand. Int J Remote Sens 
34(15–16):5892–5904. https://​doi.​org/​10.​1080/​01431​161.​2013.​798053

White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook B D, Pitt D, 
Woods M (2013) A best practices guide for generating forest inven-
tory attributes from airborne laser scanning data using the area-based 
approach. Information Report FI-X-10. Canadian Forest Service, Canadian 
Wood Fibre Centre, Pacific Forestry Centre, Victoria. p 50. http://​www.​cfs.​
nrcan.​gc.​ca/​pubwa​rehou​se/​pdfs/​34887.​pdf

White JC, Tompalski P, Vastaranta M, Wulder MA, Saarinen N, Stepper C, Coops 
AC (2017) A model development and application guide for generating 
an enhanced forest inventory using airborne laser scanning data and an 
area-based approach. Information Report FI-X-018. Natural Resources 
Canada, Canadian Forest Service, Canadian Wood Fibre Centre. Victoria, 
BC, Canada

Xu G, Manley B, Morgenroth J (2018) Evaluation of modelling approaches in 
predicting forest volume and stand age for small-scale plantation forests 
in New Zealand with RapidEye and LiDAR. Int J Appl Earth Obs Geoinf 
73:386–396. https://​doi.​org/​10.​1016/j.​jag.​2018.​06.​021

Yang T-R, Kershaw JA Jr, Weiskittel AR, Lam TY, McGarrigle E (2019) Influence 
of sample selection method and estimation technique on sample size 
requirements for wall-to-wall estimation of volume using airborne LiDAR. 
Forestry 00:1–13. https://​doi.​org/​10.​1093/​fores​try/​cpz014

Zhou X, Li C (2023) Mapping the vertical forest structure in a large subtropical 
region using airborne LiDAR data. Ecol Indic 154:110731. https://​doi.​org/​
10.​1016/j.​ecoli​nd.​2023.​110731

Zolkos SG, Goetz SJ, Dubayah R (2013) A meta-analysis of terrestrial above-
ground biomass estimation using lidar remote sensing. Remote Sens 
Environ 128:289–298. https://​doi.​org/​10.​1016/j.​rse.​2012.​10.​017

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s40663-015-0035-6
https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1080/02827580310019257
https://doi.org/10.1080/02827580310019257
https://doi.org/10.1080/02827580410019553
https://doi.org/10.1080/02827580410019553
https://doi.org/10.1016/j.rse.2011.08.021
https://doi.org/10.1016/j.rse.2016.10.022
https://doi.org/10.3390/rs11141693
https://doi.org/10.3390/rs11141693
https://doi.org/10.5589/m13-049
https://doi.org/10.3390/f5050936
https://doi.org/10.1590/0001-3765201720160324
https://doi.org/10.1590/0001-3765201720160324
https://doi.org/10.12841/wood.1644-3985.D11.04
http://pubs.casi.ca/journal/cjrs
https://doi.org/10.1139/x05-230
https://doi.org/10.1139/x05-230
https://doi.org/10.3390/f10090819
https://doi.org/10.3390/rs4040830
https://doi.org/10.1080/01431161.2013.798053
http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/34887.pdf
http://www.cfs.nrcan.gc.ca/pubwarehouse/pdfs/34887.pdf
https://doi.org/10.1016/j.jag.2018.06.021
https://doi.org/10.1093/forestry/cpz014
https://doi.org/10.1016/j.ecolind.2023.110731
https://doi.org/10.1016/j.ecolind.2023.110731
https://doi.org/10.1016/j.rse.2012.10.017

	Effect of sample size on the estimation of forest inventory attributes using airborne LiDAR data in large-scale subtropical areas
	Abstract 
	Key message 
	Context 
	Aims 
	Methods 
	Results 
	Conclusion 

	1 Introduction
	2 Materials and methods
	2.1 Study site
	2.2 Field plot data
	2.3 LiDAR data
	2.4 Statistical analysis
	2.5 Model calibration and validation
	2.6 Determination of minimum and maximum sample size

	3 Results
	3.1 Influence of sample size on estimation accuracy
	3.2 Influence of sample size on the LiDAR variables and forest attributes
	3.3 The minimum and maximum sample sizes required for forest attribute estimation

	4 Discussion
	4.1 Cause for sample size affects the estimation accuracy
	4.2 Heterogeneity of the 3D canopy structure and the effect of sample size
	4.3 Determining the minimum and maximum sample sizes

	5 Conclusions
	Acknowledgements
	References


