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Abstract 

Key message The forest canopy gaps, formed by natural or anthropogenic factors, have been found to reduce soil 
carbon content and increase nutrient availability. The magnitudes of these effects have been observed to increase 
with gap age and size, and are largely influenced by changes in temperature, precipitation, and solar radiation.

Context Local studies have illustrated the influence of canopy gaps on the spatial heterogeneity of soil carbon 
and nutrients, playing a pivotal role in driving forest regeneration and succession. Nevertheless, it remains largely 
unknown whether the response of soil carbon and nutrient content to gap formation is consistent across forest eco-
systems at global scale.

Aims The aim of this paper is to assess the homogeneity of the observed responses of soil carbon and nutrients fol-
lowing gap formation among a wide array of forest ecosystems and climatic regions.

Methods We performed a meta-analysis synthesizing 2127 pairwise observations from 52 published articles to quan-
tify the changes in in soil physical, chemical, and microbial variables resulting from gap creation in natural forests 
and plantations spanning tropical to boreal regions.

Results Canopy gaps resulted in significant decrease of soil organic carbon (Corg) and microbial carbon (Cmic). The 
concentrations of ammonium  (NH4

+), nitrate  (NO3
−), and available phosphorus (available P) increased following gap 

creation. These changes mainly occurred in the growing season and in the mineral soil layer, becoming more pro-
nounced with increasing gap age and size. The change in Corg was negatively regulated by mean annual precipitation, 
and was associated with the changes in  Nt and  Nmic. The change in  NH4

+ was positively regulated by mean annual 
temperature, and was associated with the changes in available P and oxidoreductases (Ox-EEAs). The model explain-
ing the change in soil carbon content exhibited a higher explanatory power than the one accounting for changes 
in soil nutrient availability.

Conclusion The results indicated that forest canopy gaps resulted in a reduction in soil carbon content 
and an increase in nutrient availability. These findings contribute to a better understanding of the role of small-scale 
disturbances as drivers of forest ecosystem succession.
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1 Introduction
Canopy gaps widely occur in forest communities and are 
mainly formed by natural treefalls or as a consequence of 
selective logging (Pollmann 2002). The heterogeneity of 
environmental resources caused by the occurrence of can-
opy gaps drives plant community succession (Fahey and 
Puettmann 2008; Kelemen et al. 2012; McNab et al. 2021). 
Numerous studies have shown that canopy gap dynamics, 
along with the resulting variations in light, temperature, and 
soil moisture regimes (Gray et  al. 2002; Ritter et  al. 2005; 
Galhidy et al. 2006), generally promote forest regeneration 
and succession (Yamamoto 2000; Dechnik-Vazquez et  al. 
2016; Zhu et al. 2021; Lu et al. 2023). For instance, a global 
meta-analysis demonstrated that canopy gaps enhanced 
woody plant regeneration and that the effects were influ-
enced by gap characteristics, such as gap age and size, and 
environmental factors (Zhu et al. 2014). Meanwhile, recent 
local studies have reported that the plant community suc-
cession and microclimatic change following canopy gap 
creation exert certain impacts on the soil carbon flow and 
nutrient cycling (Gough et al. 2021; Griffiths et al. 2021).

Forest regrowth following disturbances plays a crucial role 
in facilitating the terrestrial biosphere’s noticeable absorp-
tion of anthropogenic CO2 emissions (Pugh et al. 2019; Jay-
akrishnan et al. 2022). Nevertheless, the impacts of creating 
canopy gaps on soil carbon fractions have shown ambiguity, 
with reports of both positive and negative effects, as well as 
instances where no impact was observed (dos Santos et al. 
2016; Amolikondori et al. 2022). To a considerable extent, 
this disparity can be accounted for by the reality that can-
opy gaps modify the decomposition patterns of soil organic 
matter, thereby impacting the storage of carbon in the soil. 
Simultaneously, canopy gaps elevate environmental hetero-
geneity, giving rise to distinct microbial community struc-
tures and vegetation compositions. This, in turn, influences 
the input of exogenous organic carbon into the soil.

Mounting evidence suggests that soil nutrient availability 
stands out as a primary limiting factor for forest primary 
productivity, co-regulated by plant diversity and species 
turnover throughout the stages of forest succession (Long 
et al. 2018; Liu et al. 2021; Joshi and Garkoti 2023). Typically, 
canopy gaps play a role in expediting soil nutrient cycling 
within forest successional processes, encompassing nutrient 
release, migration, and transformation (Muscolo et al. 2014). 
In addition, canopy gap characteristics, including size, spa-
tial pattern, locations, and frequency, can influence light and 
water distribution as well as rates of litterfall decomposition, 
potentially leading to changes in nutrient availability (Zhang 
and Zak 1995; Eysenrode et al. 2002; Prescott 2002; Mataji 
and Vahedi 2021). Hence, it is imperative to investigate the 
alterations in soil nutrient availability following gap crea-
tion, aiming to discern the potential ramifications on forest 
regeneration and succession within forest ecosystems.

The heightened levels of light, temperature, and rain-
fall, coupled with diminished plant nutrient uptake, may 
collectively govern soil carbon and nutrient dynam-
ics following gap formation. The impacts of canopy gap 
creation on forest regeneration and succession are closely 
associated with climate conditions at larger spatial scales 
(Ackerly 2003; Zhu et  al. 2014; Pope et  al. 2023). Fur-
thermore, there is a well-established correlation between 
the characteristics of canopy gaps and the composi-
tion as well as dynamics of forest stands (Kneeshaw and 
Bergeron 1998; Ren et al. 2021). Therefore, future climate 
condition changes would greatly increase the uncertainty 
of the impacts of canopy gap creation on soil carbon and 
nutrient availability across various forest types.

The objectives of this paper are: (1) to investigate the 
effects of canopy gaps on carbon content and available 
nutrients; (2) to identify when and where canopy gaps 
may significantly impact soil carbon content and available 
nutrients; (3) to assess whether climate conditions would 
promote or constrain the effects of canopy gaps on soil car-
bon sink and fertility. Our findings will not only broaden 
the understanding of the response of the soil carbon pool 
and nutrient availability to small-scale disturbances but 
also aid in exploring the potential mechanisms of canopy 
gap effects on forest regeneration and succession.

2  Materials and methods
2.1  Data collection
We compiled our dataset by collecting articles published 
before September 2021 from the Web of Science and China 
National Knowledge Infrastructure (CNKI). The keyword 
combinations used for retrieval were (("canopy gap" OR 
"treefall gap" OR "forest gap") AND ("soil" OR "microbial" 
OR "soil enzyme") AND ("carbon" OR "nitrogen" OR "phos-
phorus" OR "nutrient" OR "stoichiometry"). To avoid unin-
tentional biases, we developed the following criteria to 
select pooled articles: (i) the article had to be a field survey 
conducted in forest areas; (ii) both canopy gaps and forest 
understory control treatments were reported; (iii) canopy 
gaps underwent strict natural recovery processes without 
artificial nutrient input or tree planting; (iv) if the study con-
tains samples from multiple time points, the data applied to 
analyze the canopy gap effects for the growing season and 
non-growing season was extracted from the middle of the 
growth season and the end of non-growing season, respec-
tively; (v) information on the sample size and the means 
of control and treatment groups were explicitly reported 
(Fig.  10 in Appendix). In total, 2127 paired observations 
were extracted from 52 articles that met the abovemen-
tioned criteria (Text 1 in Appendix), and the dataset was 
made publicly available in the Figshare repository (Tong 
et al. 2023). The geographic distribution of the canopy gap 
experiments in the meta-analysis is shown in Fig. 1.
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2.2  Data compilation
The variables extracted from the included studies were 
classified into five main groups: (i) basic soil characteris-
tics (i.e., pH, soil moisture, and soil temperature), (ii) soil 
organic carbon and total nutrients (i.e., soil organic carbon 
[Corg], total nitrogen [Nt], total phosphorus [Pt], and ratio of 
soil organic carbon to total nitrogen [C:N]), (iii) soil avail-
able nutrients (i.e., ammonium  [NH4

+], nitrate  [NO3
−], 

and available phosphorus [available P]), (iv) the activities of 
extracellular enzymes (i.e., hydrolases [Hy-EEAs] and oxi-
doreductases [Ox-EEAs]), and (v) soil microbial biomass 
carbon and nutrients (i.e., microbial biomass carbon [Cmic], 
microbial biomass nitrogen [Nmic], microbial biomass phos-
phorus [Pmic], and the ratio of microbial biomass carbon to 
microbial biomass nitrogen [Cmic:Nmic]). For each observa-
tion, we also recorded the other parameters, such as the 
latitude and longitude of the experimental locations, cli-
mate patterns encompassing the mean annual temperature 
(MAT) and mean annual precipitation (MAP), forest type 
(natural forest and plantation), and other information (can-
opy gap age and size, sampling time and location). We also 
extracted each sampling site’s mean UV radiation data from 
a global dataset (http:// www. ufz. de/ gluv) (Beckmann et al. 
2014). The correlation between geographical and climatic 
variables is shown in Table 1 in Appendix. The mean ( X ), 
sample size (n), and standard deviation (SD) of all variables 
were extracted from the original articles. If the study used 
standard error (SE) rather than SD, we used SD = SE×

√
n 

to calculate SD. When some studies did not report the 
SD or SE (n = 283), we multiplied the reported mean by 

the average coefficient of variance of the complete dataset 
to calculate the missing SD (Weir et  al. 2018). Data were 
directly obtained from the table or text, and those in digi-
tized graphs were extracted with Getdata Graph Digitizer 
(version 2.22, Moscow, Russia).

We subdivided the potential categorical variables influ-
encing changes in soil carbon content and available nutri-
ents following gap creation. These variables encompassed 
sampling time (growing season and non-growing sea-
son), sampling location (gap center and gap edge), sam-
pling layer (mineral layer (0–30  cm) and organic layer), 
gap origins (natural and artificial), gap age (≤ 3, 4–10, 
and > 10  years), and gap size (≤ 100, 101–400, and > 400 
 m2). We established these thresholds for potential cat-
egories primarily by referencing previous meta-analyses 
(e.g., Zhu et al. (2014)), determining general breakpoints 
from manipulative canopy gap experiments within our 
dataset, and analyzing the data distribution of numerical 
variables related to canopy gap characteristics (Fig. 12 in 
Appendix). In addition, the canopy gap age ranged from 
1 to 40 years, and the gap size ranged from 14 to 1600  m2.

2.3  Statistical analyses
The effects of canopy gap creation on soil carbon con-
tent and available nutrients were calculated by the nat-
ural log-transformed response ratio (lnRR) according 
to Hedges et al. (1999):

lnRR = ln(Yt/Yc) = lnYt − lnYc

Fig. 1 Distribution of study sites included in this meta-analysis. The forest types are shown as colored dots

http://www.ufz.de/gluv
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where Yt  and Yc are the means of variables in the canopy 
gap treatment group and forest understory control group, 
respectively. The variance (v) of each lnRR was calculated 
as follows:

where st and sc are the SDs of variables in the canopy gap 
treatment group and forest understory control group, 
respectively; nt and nc are the sample sizes for the canopy 
gap treatment group and forest understory control group, 
respectively.

The meta-analysis was performed using OpenMEE 
software (Wallace et  al. 2017), which took the "study" 
as a random factor to determine the mean effect size 
of each variable. Confidence intervals (CI) of effect size 
were calculated using the maximum likelihood (ML) ran-
dom-effect model. An effect of canopy gap treatment was 
considered significant if the 95% CI did not overlap zero. 
The overall effects of canopy gap creation on soil carbon 
content and available nutrients were identified first. Sub-
sequently, subgroup analysis was conducted to evaluate 
the response of soil carbon content and available nutri-
ents to canopy gap creation among different categorical 
comparisons (sampling time, sampling location, or gap 
characteristics). Higgins  I2 statistics and the Q test were 
used to quantify the heterogeneity degree  (Qm) among 
different studies. The random-effects model was used 
for highly heterogeneous studies  (I2 > 50% and p < 0.05) 
rather than a fixed-effect model because it had the char-
acteristics of close weights among studies and extensive 
applicability.

OpenMEE software offered the standard tools for 
exploring publication bias, including ’fail-safe N’ (Rosen-
berg 2005) and funnel plots (Egger et al. 1997). If the fail-
safe number was higher than 5n + 10 (n represented the 
number of paired observations in the analysis), it could be 
concluded that the current result was robust and believ-
able. Funnel plots should be funnel-shaped and symmetri-
cally centered around the summary effect estimate of the 
analysis in the absence of bias and heterogeneity. In this 
study, it was suggested that no publication biases were 
detected from our results, except for Cmic:Nmic (Table 2 and 
Fig. 11 in Appendix). We used the forest plot to show the 
results of this meta-analysis, and its generation was per-
formed using GraphPad Prism version 9.0.0 for Windows.

We utilized network visualization in Gephi software to 
demonstrate significant correlations (Chen et al. 2019). In 
this approach, variables in the dataset were represented 
by network nodes, and pairwise conditional associa-
tions between variables were depicted by edges. Moreo-
ver, all network edges connected nodes that exceeded a 
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2
+
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predefined significant threshold calculated through Pear-
son correlation (p-value < 0.05).

The random-forest method was employed to identify 
the primary predictors of the response ratios for carbon 
content and nutrient availability. Concurrently, predicted 
partial least squares path modeling (PLS-PM) was uti-
lized to analyze the impacts of biotic and abiotic factors on 
changes in carbon content and nutrient availability result-
ing from gap opening. All the aforementioned data analy-
ses were conducted using R 4.0.2 (R Core Team, 2020).

3  Results
3.1  Mean canopy gap effects
Overall, canopy gaps increased soil moisture and soil tem-
perature but did not affect soil pH (Fig.  2). Canopy gaps 
had a negative effect on Corg and Nt but a positive effect on 
Pt. For available nutrients, canopy gaps enhanced  NH4

+, 
 NO3

−, and available P by 19.4%, 13.5%, and 17.3%, respec-
tively. Canopy gaps reduced the Ox-EEAs while having no 
significant effect on the Hy-EEAs. Furthermore, canopy 
gaps exhibited significant negative effects on Cmic, Nmic, 
and Pmic, but a positive effect on Cmic:Nmic.

3.2  Factors influencing the changes induced by canopy 
gaps

We employed the subgroup analysis method to evaluate 
the factors influencing canopy gap effects, as illustrated in 
Figs. 3 and 4. During the non-growing season, canopy gaps 
exhibited a negative impact on soil pH. Throughout both 
the growing and non-growing seasons, canopy gaps led to 
increased soil moisture and soil temperature. In the non-
growing season, canopy gaps negatively affected Corg and 
Nt, whereas no effects were observed during the growing 
season. In the growing season, the Pt, available P,  NH4 +, 
and  NO3

− were enhanced following gap creation. Canopy 
gaps significantly reduced Ox-EEAs in both the grow-
ing and non-growing seasons, with no significant effect 
observed on Hy-EEAs. In the growing season, canopy gaps 
resulted in decreased Cmic and Nmic, and in the non-grow-
ing season, there were reductions in Nmic and Pmic. (Fig. 3a).

Canopy gaps exerted a negative impact on soil pH in the 
organic layer, while showing no effect in the mineral layer. 
Canopy gaps increased the soil moisture by 7.6% and 15.9% 
in the mineral and organic layers, respectively, and only 
increased soil temperature by 5.1% in the mineral layer. 
The Corg and Nt decreased while Pt increased in the mineral 
layer due to gap opening. Canopy gaps notably enhanced 
available P,  NH4 +, and  NO3

− in the mineral layer but were 
statistically insignificant in the organic layer. The Ox-EEAs 
decreased in the mineral layer, and Hy-EEAs increased in 
the organic layer following gap creation (Fig. 3b).

Canopy gaps had a negative effect on soil pH at the 
gap edge but not at the gap center. The soil moisture 
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and temperature were enhanced at both the gap center 
and edge following gap creation. Canopy gaps reduced 
Corg and Nt at both the gap center and gap edge while 
only enhanced Pt at the gap center. The  NH4 + and  NO3

− 
increased at the gap center, and the available P and  NH4 + 
increased at the gap edge following gap creation (Fig. 3c).

Short and medium-term canopy gaps increased soil 
moisture and soil temperature, whereas long-term can-
opy gaps exhibited diverse effects on them. Medium-term 
and long-term canopy gaps reduced Corg and Nt, and the 
short-term canopy gaps had no effect. Short-term canopy 
gaps increased Pt. Short-term and long-term canopy gaps 
increased available P and  NO3

−. Short-term, medium-
term, and long-term canopy gaps enhanced  NH4 + by 
16.0%, 10.5%, and 66.9%, respectively. Medium-term and 
long-term canopy gaps reduced Cmic and Nmic, and long-
term canopy gaps had a negative effect on Pmic (Fig. 4a).

Small and medium gaps decreased and increased the 
soil pH, respectively, whereas large gaps had no effect. 
Soil moisture and temperature notably increased while 

Corg decreased in each gap size class. Small and large gaps 
reduced Nt by 16.9% and 8.5%, respectively, and medium 
gaps showed a positive effect on Pt. The  NH4 + was 
enhanced in each gap size class. The  NO3

− and available P 
were enhanced in medium and small gaps, respectively. The 
Ox-EEAs significantly reduced in small and medium gaps 
but increased in large gaps. The Cmic decreased in large 
gaps, and Nmic decreased in each gap size class (Fig. 4b).

3.3  Correlations between the changes in soil carbon 
content and nutrient availability

The result of network analysis showed that changes in soil 
moisture, Corg, Nt,  NO3

− and Cmic were the critical indica-
tors closely associated with most of the other soil physical, 
chemical, and microbial properties (Fig.  5). Specifically, 
the change in soil moisture was significantly and positively 
related to the changes in Corg, Nt, available P, and  NO3

−, 
and was negatively associated with the changes in  NH4 + 
and the Ox-EEAs. The change in Corg was significantly and 
positively related to the changes in Nt, Pt, C:N, available P, 

Fig. 2 Overall effects of canopy gaps on the SOC content and nutrient availability. Values are mean effect size (× 100%) ± 95% confidence intervals 
(CI). The vertical line is drawn at lnRR = 0. The number of observations is within the parentheses. Corg, soil organic carbon; Nt, total nitrogen; Pt, total 
phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available phosphorus, available P; Hy-EEAs, 

hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, 
microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial biomass nitrogen
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and Nmic, and the most pronounced correlation was found 
between changes in Corg and  Nt. The changes in Nt and 
Nmic were positively correlated. The change in  NO3

− was 
negatively correlated with the change in Nt and  NH4

+. The 
change in Pt was negatively correlated with the change in 
Hy-EEAs. The changes in Hy-EEAs and Ox-EEAs were pos-
itively correlated. The change in Cmic was significantly and 
positively correlated with the changes in Pmic and Cmic:Nmic.

3.4  Correlations between climatic variables 
and the changes in soil properties

The changes in  NH4 +, Hy-EEAs, Ox-EEAs, and Cmic 
showed a positive correlation with MAT (Fig.  6a, c-e). 
The change in available P decreased with increasing MAT 
(Fig. 6). The changes in Corg, available P, and Pmic decreased 
with increasing MAP (Fig. 6f-h). The changes in soil tem-
perature, Corg, Nt, and Ox-EEAs increased with increas-
ing UV radiation (Fig. 6i-k, m). The change in available P, 
Pmic, and Cmic:Nmic decreased with increasing UV radiation 
(Fig. 6l, n, o). The correlations between climatic variables 
and the changes in soil carbon content and nutrient avail-
ability are detailed in Figs. 13–15 in Appendix.

3.5  Key factors that regulate the changes in soil carbon 
content and nutrient availability in canopy gaps

The random forest analysis suggested that the most 
important factors associated with the change in Corg were 

the changes in  Nt and Nmic. The changes in Cmic, availa-
ble P, and Ox-EEAs were dominant factors regulating the 
change in  NH4

+. The changes in Nmic, available P, and pH 
were the dominant factors regulating the change in  NO3

−. 
However, the importance of the changes in influencing 
factors for Cmic and available P was relatively low (Fig. 7).

The explanation of PLS-PM for the variance in the 
response of soil carbon content was at the medium level 
(GoF = 0.42). The PLS-PM showed that no correlation 
was detected between climate (including mean annual 
temperature (MAT) and UV radiation) and the change 
in carbon content (including Corg). Climate negatively 
affects the change in basic soil characteristics (includ-
ing soil moisture; path coefficient = -0.22, p < 0.05), while 
positively affecting the change in total nutrients (includ-
ing Nt; path coefficient = 0.15, p < 0.05) and the change 
in microbial characteristics (including Hy-EEAs and 
Ox-EEAs; path coefficient = 0.23, p < 0.05). The change 
in basic soil characteristics had no association with the 
change in carbon content (path coefficient = 0.02, p > 0.05) 
but positively affected the change in total nutrients (path 
coefficient = 0.21, p < 0.05). The change in total nutrients 
positively affected the change in carbon content (path 
coefficient = 0.85, p < 0.05). The variance in the change in 
carbon content was explained by 74% with climate and 
changes in basic soil characteristics, total nutrients, and 
microbial characteristics (Fig. 8a).

Fig. 3 Response of SOC content and nutrient availability to canopy gap creation for two categorical variables, including sampling time, sampling 
layer, and sampling location. Values are mean effect size (×100%) ± 95% confidence intervals (CI). The vertical line is drawn at lnRR=0. The number 
of observations is within the parentheses. Corg, soil organic carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon 
to total nitrogen;  NH4

+, ammonium;  NO3
-, nitrate; available phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, 

oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass 
phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial biomass nitrogen
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Otherwise, the explanation of PLS-PM for the variance 
in the response of soil nutrient availability was at a rela-
tively low level (GoF = 0.17). No correlations were detected 
between climate (including MAT and UV radiation) and the 
changes in nutrient availability (including  NH4

+ and  NO3
−), 

soil basic characteristics (including soil temperature), and 
total nutrients (including C:N). Climate negatively affected 
the change in microbial characteristics (including Pmic and 
Hy-EEAs; path coefficient = -0.14, p < 0.05). The change in 
total nutrients negatively affected the changes in microbial 
characteristics (path coefficient = -0.18, p < 0.05) and nutri-
ent availability (path coefficient = -0.21, p < 0.05). The vari-
ance in the change in nutrient availability was explained by 
just 7% with climate and changes in basic soil characteris-
tics, total nutrients, and microbial characteristics (Fig. 8b).

4  Discussion
4.1  Canopy gaps reduced soil carbon content
Effectively mitigating climate change may be achieved 
through the enhancement of forest carbon stocks resulting 
from sustainable forest management (Huang et  al. 2023). 
Nevertheless, our results underscored a consistent reduc-
tion in both Corg and Cmic following gap creation, indicating 
a potential decline in the soil carbon stock (Ni et al. 2016; 

Amolikondori et al. 2020). In general, heightened levels of 
irradiance and soil temperature resulting from gap creation 
or forest thinning accelerated soil microbial activity, leading 
to increased soil respiration and, consequently, enhanced 
mineralization of soil organic matter and elevated surface 
carbon efflux (Scharenbroch and Bockheim 2008) (Fig. 9). 
Therefore, the distinct effects of gap formation and forest 
thinning on soil carbon stock might be attributed to the 
reduced initial carbon input, which could be potentially 
caused by tree mortality during natural gap formation 
and litter removal after selective logging. Nevertheless, it 
is worth noting that the increased plant diversity resulting 
from gap creation is likely to enhance soil carbon storage 
over the long term (Degen et  al. 2005; Lange et  al. 2015; 
Chen et al. 2018; Jia et al. 2021).
Corg is an integral component of the forest carbon pool, 

and its active organic carbon fraction not only plays a crucial 
role in the soil carbon turnover process but also serves as 
a sensitive indicator of changes in climate conditions (Zhu 
et al. 2020; Pravalie et al. 2021). Cmic plays a vital role in eco-
system functioning by serving as the supply and inventory of 
effective soil nutrient resources (Singh and Gupta 2018; Li 
et al. 2019). Our results showed that Corg and Cmic declined 
significantly following gap creation, which might be 

Fig. 4 Response of SOC content and nutrient availability to canopy gap creation for three categorical variables, including gap age and size. 
Values are mean effect size (×100%) ± 95% confidence intervals (CI). The vertical line is drawn at lnRR=0. The number of observations 
is within the parentheses. Corg, soil organic carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total 
nitrogen;  NH4

+, ammonium;  NO3
-, nitrate; available phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, 

oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass 
phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial biomass nitrogen
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attributed to the heightened mineralization of soil organic 
matter mineralization brought by increasing soil microbial 
activity. Furthermore, the diminished input of readily avail-
able carbon sources, such as root exudates, might result in 
microbial carbon limitation, which was substantiated by our 
discovery that Cmic:Nmic decreased significantly following 
gap creation (Panchal et al. 2022). Nevertheless, despite the 
absence of a significant correlation between the response of 
Corg and Cmic to canopy gap disturbance, and the relatively 
modest reduction in Cmic compared to Corg, several potential 
factors may explain these observations. On the one hand, 
the inadequate input of plant and microbial residues led to 
a notable reduction in the Corg pool, thereby limiting the 
favorable impact of warming on soil microbial respiration in 
the warmed-up plots. On the other hand, microorganisms 
adapted to the rising temperature in external environment 
by producing enzymes with heightened thermal adaptation, 
ultimately contributing to the gradual stabilization of the 
microbial biomass pool.

Furthermore, we evaluated the effects of canopy gap 
attributes and spatiotemporal factors on the response of 
soil carbon content to canopy gap disturbance. Corg and 
Cmic displayed consistent responses to canopy gap creation. 

For instance, the results showed a remarkable reduction in 
Corg and Cmic in medium-term (4–10 years) and long-term 
(> 10 years) canopy gaps and no significant change in short-
term (≤ 3 years) canopy gaps. These differences might arise 
from large amount of readily available carbon released 
from the remaining litterfall induced by increased light and 
temperature during the early stage of gap formation (Wang 
et al. 2015, 2021). Notably, significant decreases in  Corg and 
 Cmic occurred in the non-growing and growing seasons, 
respectively. This result might be attributed to the lower 
supplementation of root exudates during the non-growing 
season. In contrast, soil microbial respiration maintained a 
higher level in the growing season. Overall, the downward 
trend in soil carbon stock following gap creation might 
be attributed to variations in initial carbon input between 
canopy gaps and forest understory sites.

4.2  Canopy gaps enhanced soil nutrient availability
The efficient recycling of nutrients plays a crucial role in 
determining availability of nutrients in forest ecosystems. 
Typically, natural disturbances or partial harvesting prac-
tices that expedite nutrient recycling through the creation 
of canopy gaps also tend to enhance the spatial variability 

Fig. 5 Network analysis for the correlation between soil physical, chemical, and microbial properties. Node colors are communities obtained 
from the pre-classification; each community in the network is represented by the same node color. Node sizes are obtained from the ranking 
degree, and wider nodes are the parentheses having more correlations with other parentheses. Red and green edge lines represent positive 
and negative correlations, respectively. The edge thickness represents the strength of the correlation. Corg, soil organic carbon; Nt, total nitrogen; 
Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available phosphorus, available P; 

Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, 
microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial biomass nitrogen
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in soil nutrient availability (Prescott 2002; Thiel and Pera-
kis 2009; Xu et al. 2016). In the present study, there was a 
notable improvement in soil nitrogen availability following 
gap creation, as evidenced by a significant enhancement in 
 NH4

+ and  NO3
− concentrations, consistent with the find-

ings from similar previous studies (Thiel and Perakis 2009; 
Kucera et al. 2020). This result could be primarily attributed 
to the reduction in nutrient uptake by vegetation, as well as 
a decrease in carbon inputs from litter and root exudation, 
which induced a decrease in nitrogen assimilation by soil 
microbial biomass. Meanwhile, the increase in soil micro-
bial activity facilitated nitrogen mineralization from soil 
microbial biomass, predominantly during the growing sea-
son and in the mineral layer.

The elevation of soil moisture levels had both negative 
and positive effects on the subsequent increase in  NH4

+ and 
 NO3

− following gap creation. This indicated that maintain-
ing an appropriate soil moisture level may accelerate soil 
nitrification (Chen et  al. 2015; Osborne et  al. 2016). Fur-
thermore, our study revealed a significant enhancement in 
 NO3

− concentration following gap creation. This suggested 
that soil denitrification might decline and be primarily influ-
enced by soil moisture, temperature, and C:N (Bremner and 
Shaw 1958; Elrys et al. 2021; Pan et al. 2022).

Our study detected a notable decrease in  Nt and Nmic 
following gap creation, with this decline becoming more 
pronounced as gap age and size increased. This reduction 
might be attributed to the decrease in organic nitrogen, 
which severed as the primary nitrogen source of plants 
and microorganisms through litter nutrient return and 
root nutrient release. This, in turn, seemed to pose chal-
lenges in maintaining the soil nitrogen pool (Wu et  al. 
2022). Furthermore, our observations revealed a posi-
tive correlation between the changes in Nt and Nmic. This 
implied that microbial biomass, acting as a source of bio-
available nitrogen, played a pivotal role in predicting the 
spatiotemporal fluctuations within the soil nitrogen pool 
(Miltner et al. 2012; Daly et al. 2021).

The primary source of phosphorus in forest soil is 
derived from rock weathering (Kolowith and Berner 
2002; Eger et al. 2018). We observed a noteworthy rise in 
Pt following gap creation, a trend in line with other for-
estry practices, such as thinning (Tian et al. 2019; Zhou 
et  al. 2021). This increase might be attributed to the 
improved soil temperature and moisture levels resulting 
from gap creation, which in turn expedited the migra-
tion of phosphorus from the subsoil to the topsoil. 
Meanwhile, a notable positive correlation was observed 

Fig. 6 Relationships of mean annual temperature (MAT, a-e), mean annual precipitation (MAP, f–h), and mean ultraviolet radiation (UV radiation, 
i-o) with response ratios (RR) of SOC content and nutrient availability. Fitted regressions and corresponding levels of significance are presented. 
Corg, soil organic carbon; Nt, total nitrogen;  NH4

+, ammonium; available P, available phosphorus; Hy-EEAs, hydrolases-extracellular enzymes 
activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Cmic:Nmic, the ratio of microbial biomass carbon 
to microbial biomass nitrogen



Page 10 of 23Tong et al. Annals of Forest Science           (2024) 81:12 

between enhancement of Pt and available P, indicat-
ing the crucial role of phosphorus migration in the soil 
phosphate supply. The microbial biomass could serve as 
a potential resource or reservoir of available plant nutri-
ents under specific environmental conditions (Singh et al. 
1989; Wardle et  al. 2004; Sugito et  al. 2010). This study 
observed a significant increase in available P and a simul-
taneous decrease in Pmic following gap creation. As men-
tioned earlier, the decrease in plant nutrient uptake might 
contribute to the rise in available P. Simultaneously, the 
insufficient substrate supply, resulting from reduced litter 
nutrient return and root nutrient release, could lead to a 
decline in microbial biomass. Additionally, the increased 
soil moisture might enhance phosphorus availabil-
ity, likely achieved by promoting soil microbial activity 
(Gomoryova et al. 2006; Yang et al. 2023).

Enzyme activity serves as a crucial indicator of soil bio-
logical activity and nutrient cycling in forest ecosystems, 

with its alternation dependent on the initial soil nutrient 
and water status (Gomez et al. 2020; Levakov et al. 2021). 
This study observed a significant decline in Ox-EEAs fol-
lowing gap creation, potentially attributable to reduced 
soil nutrient supply. Furthermore, the decrease in Ox-
EEAs exhibited a negative correlation with the increase 
in soil moisture, suggesting improved soil moisture con-
ditions alleviated the reduction in soil enzyme activity. 
Overall, soil available nutrients were enhanced following 
gap creation, aligning with similar findings reported in 
the literature regarding the impact of global forest recov-
ery on soil fertility (Zhou et al. 2022).

4.3  Effects of climate conditions on the changes in soil 
carbon content and nutrient availability

It is well-documented that changes in climate conditions 
have far-reaching impacts on carbon sink and nutrient 
cycling in forest ecosystems (Fung et al. 2005; Elrys et al. 

Fig. 7 The random-forest analysis to identify the main predictors of the response ratios of SOC content (a, b) and nutrient availability (c, d, e). The 
percent increase in mean squared errors (% IncMSE) represents the importance of main predictors, and negative values of % IncMSE, which indicate 
a lack of importance, are not shown. MAT, mean annual air temperature; MAP, mean annual precipitation; Corg, soil organic carbon; Nt, total nitrogen; 
 Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available phosphorus, available P; 

Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, 
microbial biomass nitrogen; Pmic microbial biomass phosphorus
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2021; Margalef et  al. 2021). A recent study reported a 
global reduction in the forest recovery effect on soil car-
bon sink and soil fertility due to joint changes in temper-
ature and rainfall (Zhou et al. 2022). In the present study, 
we examined the influence of climate condition changes 
on the dynamics of soil carbon content and available 
nutrients following gap creation (Figs.  13, 14 and 15 
in Appendix). The results indicated that temperature 

generally attenuated the effects of canopy gaps on the soil 
carbon content and available nutrients. Conversely, pre-
cipitation enhanced the canopy gap effects, aligning par-
tially with the findings of Zhou et al. (2022).

Specifically, our observations indicated that the ele-
vated MAP mitigated the decline in Corg and Pmic, as 
well as the increase in available P (Fig. 14 in Appendix). 
These findings suggested that heavy precipitation might 

Fig. 8 Predicted partial least squares path modeling (PLS-PM) showing the effects of biotic and abiotic factors on the changes in SOC content 
(a) and nutrient availability (b). In the structural model, the lines indicated paths, and the values adjacent to the lines denote the magnitude 
of the path coefficients calculated by PLS regression.  R2 values are shown for all endogenous latent variables. Values in the measurement model 
represent the loadings between a latent variable and its indicators. The figure shows the final models after the model diagnosis processes. 
Specifically, some of the changes in the regulating factors were removed because of low loading (|loading|< 0.70). The * denote significant 
pathways (p < 0.05). The Pseudo Goodness-of-Fit (GoF) of model (a) and model (b) is 0.42 and 0.17, respectively. MAT, mean annual air temperature; 
MAP, mean annual precipitation; Corg, soil organic carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total 
nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, 

oxidoreductases-extracellular enzymes activities; Cmic, microbial biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass 
phosphorus

Fig. 9 Concept map of the potential mechanisms of SOC content and nutrient availability in response to canopy gap creation. Corg, soil organic 
carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available 

phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, 
microbial biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon 
to microbial biomass nitrogen
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have constrained both soil microbial respiration and the 
transformation of Pmic into available P. The rise in MAT 
intensified the decrease in Cmic (Fig.  13 in Appendix). 
This phenomenon might be attributed to the carbon 
losses in the soil induced by warming, as explained by the 
mechanism of substrate depletion (Walker et al. 2018). In 
addition, the elevated MAT also amplified the increase 
in  NH4

+, possibly due to the plant exhibiting heightened 
nutrient uptake at elevated temperatures.

Solar radiation is intricately linked to plant photosyn-
thesis and nutrient stoichiometry, garnering heightened 
attention for its impact on biogeochemical cycling in recent 
studies (Epp et al. 2007; Ji et al. 2020; Barnes et al. 2023). In 
the current investigation, we evaluated the influence of UV 
radiation on the dynamics of both the physical and chemi-
cal properties of the soil following gap creation (Fig. 15 in 
Appendix). Previous studies have consistently demon-
strated that the formation of canopy gaps significantly ele-
vates soil temperature, primarily due to the increased solar 
radiation reaching the forest floor (Wang et al. 2022). Our 
study further observed a pronounced enhancement in soil 
temperature caused by UV radiation, potentially resulting 
in a more substantial impact on soil microbial respiration.

We observed that UV radiation enhanced the nega-
tive effects of canopy gaps on Corg and Nt, possibly due 
to an enhancement in soil microbial respiration. Like-
wise, our findings revealed that UV radiation facilitated 
a reduction in Ox-EEAs by instigating substantial losses 
in soil organic matter. In contrast, it was observed that 
UV radiation reduced the positive effects of canopy gaps 
on available P, as well as the negative effects on Pmic, sug-
gesting that UV radiation might play a crucial role in 
regulating phosphorus cycling through the modulation 
of soil phosphorus-related enzyme activities, such as soil 
acid phosphatase. Meanwhile, we found that the increase 
in Cmic:Nmic was negatively associated with UV radiation, 
implying that high solar radiation could mitigate micro-
bial nitrogen limitation to some extent.

4.4  Study limitations and management implications
While we have endeavored to offer a comprehensive 
understanding of the effects of canopy gaps on soil car-
bon content and nutrient availability through a global 
meta-analysis, there remain several potential limita-
tions. Firstly, the sampled studies do not encompass the 
full spectrum of global forests, focusing primarily on 
eastern forests. Therefore, further research spanning a 
broader range of forest biomes, especially boreal and 
tropical forests, is imperative to ascertain the general-
ity of our findings. Secondly, the analysis overlooks vital 
information regarding the surrounding gaps of trees. For 
example, tree height correlates with the angle of incom-
ing solar radiation, and the crown radius is associated 

with gap edge effect. Thirdly, this study lacks direct evi-
dence to elucidate potential mechanisms, particularly 
the responses of soil microorganisms after gap creation. 
Finally, previous research confirms the close association 
between biodiversity and soil nutrient availability. How-
ever, information regarding the variation in the gap-mak-
ing species is not recorded in the present meta-analysis.

Our study has significant implications for sustainable 
forest management. Firstly, it highlights the pronounced 
effects of canopy gaps on the soil carbon sequestra-
tion, nutrient availability, and their interconnectedness 
with climate conditions. Consequently, integrating the 
canopy gap effect into spatially explicit models is crucial 
for achieving a comprehensive understanding of carbon 
sequestration and biodiversity conservation (O’Connor 
2008; Forsius et al. 2021). Secondly, this study has signifi-
cantly contributed to a comprehensive understanding of 
the effects of canopy gaps on soil carbon and nutrients. 
This, in turn, facilitates more accurate predictions of for-
est succession in the future. With the growing popularity 
of close-to-nature forest management, the implementa-
tion of small-scale harvests and artificial canopy gaps is 
poised to play crucial roles in restoration of low-quality 
secondary forests and monoculture plantations (Fig.  16 
in Appendix). Thirdly, prior studies have emphasized the 
necessity of sustainable forest management for climate 
change adaptation (Canadell and Raupach 2008; Liu et al. 
2013; Keenan 2015). Our study contributes valuable infor-
mation regarding the impacts of changes in climate condi-
tions on soil carbon content and nutrient availability after 
the creation of canopy gaps. This information is crucial 
for the implementation of artificial canopy gaps in forest 
management under current and future climate conditions.

5  Conclusions
The occurrence of canopy gaps was found to decrease soil 
carbon content while simultaneously increasing nutrient 
availability in the topsoil layer of forest ecosystems. These 
changes became more pronounced with the age and size of 
canopy gaps. The alteration in soil moisture level following 
gap creation might serve as a crucial driver of the response 
of soil carbon pool and nutrient availability. Precipita-
tion and temperature played negative and positive roles, 
respectively, in influencing the soil carbon content and 
nutrient availability. Additionally, UV radiation exhibited 
a positive regulatory effect on the response of soil carbon 
and nitrogen components, while playing a negative regu-
latory role in the response of phosphorus components. 
In summary, this study sheds light on the significant roles 
played by canopy gaps in regulating carbon stock dynamics 
and nutrient biogeochemical cycles in forest ecosystems. 
The findings have noteworthy implications for ecological 
restoration and fine-scale regulation of forest structure.
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Fig. 10 The PICOS process of this meta-analysis
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Fig. 11 Funnel plot for the 16 variables

Fig. 12 Frequency of the division in gap age (a) and size (b)
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Fig. 13 Relationships of mean annual temperature (MAT, a-p) with response ratios (RR) of SOC content and nutrient availability. Corg, soil organic 
carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available 

phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial 
biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial 
biomass nitrogen



Page 18 of 23Tong et al. Annals of Forest Science           (2024) 81:12 

Fig. 14 Relationships of mean annual precipitation (MAP, a-p) with response ratios (RR) of SOC content and nutrient availability. Corg, soil organic 
carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available 

phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial 
biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial 
biomass nitrogen
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Fig. 15 Relationships of mean ultraviolet radiation (UV radiation, a-p) with response ratios (RR) of SOC content and nutrient availability. Corg, soil 
organic carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, ammonium;  NO3
−, nitrate; available 

phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular enzymes activities; Cmic, microbial 
biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial biomass carbon to microbial 
biomass nitrogen
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Fig. 16 Response of SOC content and nutrient availability to canopy gap creation for two categorical variables, including forest type and gap 
formation type. Values are mean effect size (× 100%) ± 95% confidence intervals (CI). The vertical line is drawn at lnRR = 0. The number of observations 
is within the parentheses. Corg, soil organic carbon; Nt, total nitrogen; Pt, total phosphorus; C:N, the ratio of soil organic carbon to total nitrogen;  NH4

+, 
ammonium;  NO3

−, nitrate; available phosphorus, available P; Hy-EEAs, hydrolases-extracellular enzymes activities; Ox-EEAs, oxidoreductases-extracellular 
enzymes activities; Cmic, microbial biomass carbon; Nmic, microbial biomass nitrogen; Pmic microbial biomass phosphorus; Cmic:Nmic, the ratio of microbial 
biomass carbon to microbial biomass nitrogen

Table 1 Correlation analysis of geographical and climatic variables. MAT, mean annual temperature; MAP, mean annual precipitation; 
UV radiation, ultraviolet radiation

Latitude Longitude Elevation MAT MAP

Longitude -0.313** 1

Elevation - - 1

MAT -0.598** - - 1

MAP -0.418** - - 0.454** 1

UV radiation -0.972** 0.328* - 0.599** 0.403**

* p < 0.05; ** p < 0.01

Table 2 Description of the Fail-safe N for the 16 variables

Sample size (n) Fail-safe N Sample size(n) Fail-safe N

pH 192 2596 NO3
− 178 233,147

Soil M 199 18,852 Available P 100 389,209

Soil T 117 35,450 Hy-EEAs 87 1992

Corg 303 5042 Ox-EEAs 23 427

Nt 238 23,171 Cmic 128 638

Pt 96 3052 Nmic 58 667

C:N 147 1553 Pmic 68 1590

NH4
+ 179 83,308 Cmic:Nmic 22 0*
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