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Abstract 

Key message We test the potential benefits of planting 2‑year vs. 1‑year‑old seedlings to restore Mediterranean oak‑
dominated systems. Planting 2‑year‑old Quercus suber L. seedlings is recommended for improved survival and resil‑
ience against wild boar (Sus scrofa L.) and drought in dry sandy soils. The removal of acorns in seedlings did not appar‑
ently influence leaf biochemical traits and could reduce wild boar damage, particularly in 1‑year‑old seedlings.

Context In the face of anthropogenic global change, Mediterranean oak‑dominated ecosystems confront increased 
biotic (ungulate herbivory) and abiotic (drought) stressors, compromising forest regeneration. Restoration measures 
are imperative to address this scenario.

Aims This study assesses the impact of different mitigation measures on the survival and biochemical traits of two 
oak species.

Methods We planted Quercus ilex L. and Q. suber L. seedlings in Cabañeros and Doñana National Parks (Spain), sub‑
jecting them to three treatments: cotyledon/acorn removal, seedling age (1‑ vs. 2‑year‑old), and herbivore protection 
(fenced vs. non‑fenced).

Results Wild boar (Sus scrofa L.) damage peaked in winter and early spring, while drought prevailed from late spring 
to fall. In sandy soils, wild boar uprooted 1‑year‑old more often than 2‑years‑old seedlings (40% vs. 18%). One‑year‑old 
seedlings without acorns showed higher survival rates against wild boar only in sandy soils. The removal of acorns 
in seedlings did not influence plant biochemical traits.

Conclusions Planting 2‑year‑old seedlings in sandy soils may mitigate wild boar damage and improve drought 
resilience. Seedling age seems more important than acorn removal against biotic and abiotic stressors although acorn 
removal could reduce wild boar damage in 1‑year‑old seedlings. Our results underscore the importance of consider‑
ing multiple stressors in oak restoration strategies.
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1 Introduction
A major challenge facing ecologists today is understand-
ing how global change is altering the structure, diversity, 
and dynamics of plant communities (Franklin et  al. 2016; 
Pugnaire et  al. 2019). Anthropogenic global changes are 
considered important drivers of these processes, contribut-
ing, among other factors, to the decline in tree recruitment 
rates in many areas of the world (Kerr 2007; Wright 2010; 
Wu et al. 2019). Analyzing the impact of different mitigation 
measures aimed at reducing anthropogenic stressors on tree 
regeneration is imperative and deserves further attention.

In the Mediterranean basin, climate change has produced 
an increase in the frequency and intensity of drought epi-
sodes and heat waves (IPCC 2019) as well as a variation 
in precipitation patterns (Peñuelas et al. 2004; Fernández-
Manjarrés et al. 2018; Noto et al. 2023), leading also to an 
increase in the intensity of wildfires (Ruffault et al. 2020). 
Thus, drought is already the main abiotic stress threaten-
ing Mediterranean ecosystems and compromising forest 
regeneration (Peñuelas et  al. 2017). In addition, land use 
changes driven by socio-economic factors are favoring a 
rapid increase of ungulate populations across the Northern 
Hemisphere (Côté et  al. 2004; Valente et  al. 2020; Carpio 
et al. 2021a). Particularly striking is the dramatic increase in 
wild ungulate populations in Mediterranean environments 
in recent decades (Acevedo et al. 2008), especially in highly-
diverse Mediterranean oak (genus Quercus) ecosystems. 
Ungulates exert a disproportional effect on plant commu-
nities, as ecosystem engineers, which can prevent or hinder 
natural regeneration of key native Mediterranean oak spe-
cies (Tyler et al. 2006; Muñoz et al. 2009; San Miguel et al. 
2010; Davis et al. 2011; Perea et al. 2014b; López-Sánchez 
et al. 2021). Ungulates can modify vegetation and steer suc-
cession through a variety of mechanisms, such as herbivory 
(browsing, grazing), physical disturbance (trampling, fray-
ing, uprooting), and nutrient translocation (defecation) 
(Ramirez et al. 2019; Reimoser et al. 2023).

The Mediterranean basin is a highly anthropized land-
scape with a long history of human occupation (Blondel 
2006). It contains extensive degraded areas due to the 
excessive exploitation of the land (i.e., intensive agricul-
ture, overgrazing, repeated burning, and deforestation). 
Restoration is a necessary tool to recover functioning of 
degraded areas, but this task has become difficult in the 
new context of climate change. Therefore, many restora-
tion efforts are failing due to the complexities of over-
coming the major abiotic and biotic stressors (Castro 
et al. 2004; Perea and Gil 2014a; Rey-Benayas et al. 2015; 
López‐Sánchez et  al. 2019). Thus, new restoration tools 
are urgently needed based on a better understanding 
of tree regeneration under the new context and should 
mostly focus on making ecosystems more resistant (Cas-
tro et al. 2004; Pulido et al. 2010).

Plant recruitment is a multi-stage demographic process 
that can be affected by multiple abiotic and biotic stress-
ors, limiting seed dispersal and germination or seedling 
and sapling survival. A bottleneck on any of these stages 
can arrest the entire recruitment process (Pulido and Díaz 
2005; Ramirez et al. 2023). In Mediterranean systems, seed-
ling establishment and survival are critical processes for the 
regeneration of Quercus species (Espelta et al. 1995; Retana 
et  al. 1999; Rodríguez-Calcerrada et  al. 2010; Arosa et  al. 
2015; Martínez-Baroja et al. 2022). Among abiotic stresses, 
summer drought causes most seedling mortality (Rey-
Benayas 1998; Gómez-Aparicio et al. 2004, 2008; Marañón 
et al. 2005; Pulido and Díaz 2005; Gómez and Hódar 2008; 
Rodríguez-Calcerrada et  al. 2010; López-Sánchez et  al. 
2019) as seedlings have poorly developed root systems and 
cannot access deep water in the dry period (Matzner et al. 
2003; Tyler et al. 2008). Additionally, many biotic stressors 
affect oak seedlings including pathogens, herbivores, and 
competition with other plants (Cuesta et al. 2010). Among 
the damages caused by ungulates, such as deer (Cervidae) 
or bovids (Bovidae), browsing stands out as one of the 
major factors constraining oak regeneration in Mediterra-
nean environments (Pulido and Díaz 2005; López‐Sánchez 
et  al. 2016; Leal et  al. 2022), typically affecting saplings 
and young bushes more intensively than seedlings (López‐
Sánchez et al. 2014; Perea et al. 2016; Peláez et al. 2019). In 
addition, plant palatability plays an important role as pre-
ferred plants are more heavily browsed than non-preferred 
plants (Rooney and Waller 2003; Perea et al. 2014a). Other 
ungulates, such as wild boars (Sus scrofa; Suidae), kill the 
plants mostly by digging up the whole seedling (Focardi 
et  al. 2000; Gómez et  al. 2003; Pulido and Díaz 2005; 
Gómez and Hódar 2008). Moreover, unlike deer or bovids 
that primarily feed on fallen acorns, wild boars also con-
sume hoarded acorns that are dispersed by scatter hoarders 
away from trees, demonstrating a remarkable efficiency in 
foraging buried acorns in both open areas and shrublands 
(Herrera 1995; Focardi et al. 2000; Gómez et al. 2003). Wild 
boars can also uproot growing seedlings to consume their 
acorn, or accidentally, when looking for other buried food 
items, leaving the roots exposed and thus causing the death 
of the plant (Herrera 1995; Focardi et al. 2000; Gómez et al. 
2003; Gómez and Hódar 2008; Mayer et  al. 2000; Perea 
and Gil 2014a). Although active restoration by planting is 
particularly useful to promote forest regeneration (Rey-
Benayas 2005; Leiva et al. 2013; Andivia et al. 2021), current 
ungulate densities in many areas compromise planting suc-
cess (Perea et al. 2014b; Fern et al. 2020; Skotál et al. 2021).

Some restoration studies have shown that consider-
ing spatio-temporal variability of different stressors may 
improve our understanding of the mechanism underlying 
seedling survival (Gómez et al. 2003; Gómez-Aparicio et al. 
2005; López‐Sánchez et  al. 2019). Numerous studies have 
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already pointed out the importance of microsite location 
for seedling survival, for example, those created by nurse 
plants, which provide protection against biotic and abiotic 
factors (Castro et al. 2002; Rey-Benayas et al. 2002; Gómez-
Aparicio et al. 2005; Cuesta et al. 2010; Garrote et al. 2019; 
Pelaéz et al. 2019). Nursing effects include hiding seedlings 
from predators (Callaway et al. 2000; Zamora et al. 2004). 
However, ungulates such as wild boars are able to detect 
acorns very efficiently, even after they have germinated and 
remain attached to the seedlings (Groot Bruinderink et al. 
1994; Gómez et  al. 2003). When seedlings are older and 
the cotyledon reserves are almost depleted, acorn preda-
tors become less pressing (Gómez et al. 2003). Therefore, 
removing the acorn from the seedling before planting 
may reduce the impact of wild boars; however, it can also 
weaken the seedling by arresting the supply of nutrients 
from the acorn to the growing plant parts. The effect of 
removing the acorn attached to the seedling on wild boar 
damage and restoration projects success remains largely 
unknown (but see Yi et al. 2015). The use of individual pro-
tection methods, such as wire cages, has been shown to be 
an effective method to reduce ungulate damage (Reque and 
Martin 2015) but it can increase considerably the project 
budget (Perea and Gil 2014a) and involves a source of waste 
that is rarely accounted for in restoration management pro-
jects. The use of large exclosures is also effective against 
wild ungulates but their economic (e.g., 2  m high fences, 
electrified fences, or high-tensile ground cables) and envi-
ronmental costs (animal collision, habitat fragmentation, 
unesthetic views) may deter managers from using them, 
particularly in protected areas (Smith et al. 2020).

Another important consideration in assisted oak regen-
eration is the intraspecific differences in seedling survival 
according to their attributes, such as plant size or age (Andi-
via et al. 2021; Navarro et al. 2006). However, previous stud-
ies have reported mixed findings. Some studies have shown 
higher survival rates among 1-year-old compared to 2-year-
old seedlings (González-Rodríguez et al. 2011; Navarro et al. 
2006), while others have observed the opposite trend (Bonfil 
et al. 2020). Furthermore, most of these studies have focused 
on the effect of seedling age on abiotic stress resistance, 
and there is limited research on the effect of plant age to 
improve survival or physiological performance under biotic 
factors such as wild boar. Leaf biochemical traits are easy 
to measure in the field (e.g., using leaf-clip optical devices) 
and may provide useful information about the seedling sta-
tus (Agati et  al. 2016). The physiological responses of oak 
seedlings may vary depending on the different plant traits 
and treatments (López‐Sánchez et  al. 2021). For example, 
chlorophyll is related to photosynthetic activity and plant 
vigor (Percival 2005), flavonols and anthocyanins provide a 
defense against biotic and abiotic stressors (Chalker-Scott 
1999; Hernández et  al. 2004; López‐Sánchez et  al. 2021), 

and nitrogen, a major plant food, is an essential constituent 
of proteins and chlorophyll and plays an important role in 
plant metabolism (Leghari et al. 2016). Thus, the inclusion 
of biochemical measures provides a more comprehensive 
understanding of the processes affecting seedling survival 
and performance and can support the assessment of plant 
responses to applied treatments.

In this study, we evaluate the effectiveness of two resto-
ration practices to increase Quercus ilex L. and Quercus 
suber L. seedling survival in two Mediterranean National 
Parks in the Iberian Peninsula, where wild ungulates (red 
deer—Cervus elaphus L. and wild boar—Sus scrofa L.) 
occur in high densities. Specifically, we investigated the 
effect of cotyledon removal (manual acorn extirpation) 
and plant age (1- vs. 2-year-old seedlings) on seedling 
survival and leaf biochemical traits.

We specifically hypothesized that:

a) Higher mortality due to wild boars will be observed 
in 1-year-old vs. 2-year-old seedlings because of the 
higher acorn nutrient content in 1-year-olds (Gómez 
et al. 2003).

b) Seedlings without the acorn attached would display 
higher survival rates as they will not be so frequently 
damaged by wild boars.

c) Removing the acorn attached to the seedling will not 
significantly affect leaf biochemical traits especially 
in the case of 2-year-old seedlings.

d) Two-year-old seedlings will show higher resilience 
against drought than 1-year-old because of their 
deeper and more developed root system.

2  Materials and methods
2.1  Study area
The experiment was conducted in two Spanish National 
Parks (NPs): Cabañeros NP (central Spain; 39°23′ N, 4°29′ 
W) and Doñana NP (southwestern Spain; 37°01′ N, 6°30′ 
W; Fig.  1), both with Mediterranean climate character-
ized by dry and hot summers. Doñana NP is considered 
sub-humid, with an Atlantic influence that moderates 
temperatures in winter and summer (600  mm average 
annual rainfall, AAR, and 17  °C mean T; Miteco 2011). 
Cabañeros NP experiences colder winters (550 mm AAR, 
12.4  °C mean T; García-Herrera et al. 2011), owing to its 
inland location and higher elevation compared to Doñana 
(700 m a.s.l. vs. 10 m a.s.l.). Cabañeros NP has two distinct 
geographical features known as the “Sierras” and “Rañas”. 
The Sierras are mountainous terrains characterized by the 
presence of quartzite and siliceous slate, while the “Rañas” 
are expansive plains formed by the accumulation of clay 
and quartzite pebbles from alluvial deposits along the 
hillside. These Rañas have an argillic horizon that causes 
an extensive hydromorphy that acidifies the soil (Pardo 



Page 4 of 21Peláez et al. Annals of Forest Science           (2024) 81:38 

García 1995). Doñana is the result of coastal-littoral sedi-
mentation processes that have formed a large aeolian 
landform. Soils are poor in organic matter, slightly acidic, 
and consisting mainly of sand with some silt and clay. Low 
water retention capacity of these soils allows rapid water 
circulation (Clemente et al. 1998).

The vegetation in Cabañeros is dominated by sclero-
phyllous and semideciduous oak forests and woodlands 
composed by Quercus ilex L., Quercus suber L., Quercus 
faginea Lam., and Quercus pyrenaica Willd., with an under-
story dominated mainly by evergreen shrubs such as Cistus 
ladanifer L., Erica spp., Rosmarinus officinalis L., Lavandula 
pedunculata (Mill.) Cav., Thymus mastichina L., Phillyrea 
angustifolia L., and Rubus ulmifolius Schott (Perea et  al. 
2015a). Doñana vegetation is dominated by both monospe-
cific and mixed forests of Pinus pinea L. and Quercus suber, 
alongside extensive areas of shrubland. The composition of 
the shrubland vegetation varies significantly depending on 
the soil phreatic properties, resulting in two distinct cat-
egories referred to as “Monte Blanco” and “Monte Negro”. 
“Monte Blanco” encompasses open shrublands found on 
drier soils, featuring a variety of plant species, including 
Halimium halimifolium (L.) Willk., Rosmarinus officinalis 

L., Ulex australis Clemente, Cistus libanotis L., Lavandula 
stoechas L., and Thymus mastichina L. In contrast, “Monte 
Negro” is distinguished by its dense shrublands, thriving on 
humid soils and boasting a diverse flora that includes Erica 
spp., Calluna vulgaris L., Phillyrea angustifolia, Rubus ulmi-
folius, Ulex minor Roth, and Ulex australis.

Both National Parks host high density of wild ungu-
lates, with wild boar and the red deer as the most abun-
dant species (Perea and Gil 2014a; Gortázar et al. 2008). 
In Cabañeros, current densities are 31 individuals (ind.) 
per  km2 for red deer and 2.5 ind./km2 for wild boar (Lin-
ares and Urivelarrea 2020), and in Doñana, 6 and 5 ind./
km2, respectively (Laguna 2015), although ungulate pres-
sure strongly varies spatially and seasonally, depending on 
food resource distribution. In both parks, the regenera-
tion processes of the main oak species are in decline partly 
due to high pressure from wild ungulates (Perea and Gil 
2014a; Fedriani et al. 2016). Currently, populations of red 
deer and wild boar numbers are controlled by rangers to 
reduce ungulate overabundance (Linares and Urivelar-
rea 2020). Density of lagomorphs (rabbit—Oryctolagus 
cuniculus L. and hare—Lepus granatensis Rosenhauer) for 
Doñana are 2.5 individuals per  km2 (Beltrán et al. 2022). 

Fig. 1 Experimental design with the location of the sites. Dots show the locations where seedlings were planted, both outside the fence (red) 
and inside the fence (green). Blue lines delimit the fenced exclosure perimeter



Page 5 of 21Peláez et al. Annals of Forest Science           (2024) 81:38  

In Cabañeros, lagomorph density is unknown but pre-
sumably very low (Delibes-Mateos et al. 2008).

During the study period (February to September), the 
accumulated precipitation in Cabañeros and Doñana was 
210 mm and 174 mm, respectively, 4% and 34% lower than 
the average of the last 20  years (2000–2020; Figure  5 in 
Appendix). Moreover, in the crucial month of May (López-
Sánchez et al. 2019), which marks the onset and length of 
summer drought in Mediterranean environments, both 
Cabañeros and Doñana had 11  mm and 10  mm of rain, 
70% and 63% below the respective averages, resulting in an 
earlier onset of the summer drought.

2.2  Experimental design
The experimental sites in both NPs were situated in 
shrublands characterized by a low tree density that 
historically had higher tree density. Specifically, in 
Cabañeros NP, the study was conducted in a transition 
zone between the “Raña” and the mountain ranges “Sier-
ras.” In Doñana, the experimental site was located in an 
area dominated by “Monte Blanco” vegetation. In both 
parks, a wild ungulate fenced exclosure, proved effective 
for wild boar, was used as the study site (see Fig. 1).

In Cabañeros, the fence consisted of a 2-m-high wire 
fence. The planting was made inside and outside the fence 
to evaluate ungulate pressure. Photo-trapping (Brown-
ing motion detection cameras, Model BTC-5PXD) was 
used to confirm that no ungulates enter the exclosure and 
to identify the animals interacting with the planted seed-
lings. Thus, three cameras were located inside and three 
outside the exclosure from February to July. Cameras were 
pointing at the seedlings and were rotated among planta-
tion sites as they were killed or died (Figure 6 in Appendix). 
No medium-size mammals (lagomorphs) or large ungu-
late were detected during photo-trapping inside the fence 
in Cabañeros and thus, the inside area (with none of these 
herbivores) was used as the control treatment (see Fig. 1). 
In Doñana NP, there was no control treatment as rabbits 
were abundant within the fenced area. Thus, only the out-
side area of the fence was used as a replicate of the “outside 
the fence” treatment in Cabañeros NP.

In each park, 25 planting sites (ca. 7 m × 7 m each) around 
the fenced area were selected at a minimum distance of 20 m 
from each other to ensure independence. Each planting site 
had the same ecological conditions (soil, rock cover, micro-
topography, plant composition). Two different treatments 
were set-up at each point: (i) cotyledon removal: seedlings 
with acorn attached and seedlings without acorn and (ii) 
plant age: a pair of 1- and 2-year-old seedlings was planted 
at a distance of 50 cm from each other. In Cabañeros, this 
was repeated inside the fence as a control plot without 
mammal herbivory (fenced treatment). In February 2021, 
just before the onset of the growing season, we planted 200 

Quercus ilex seedlings in 25 points × 2 acorn treatments × 2 
ages × 2 fenced sites; in Doñana, we planted 100 Quercus 
suber seedlings in 25 points × 2 acorn treatments × 2 ages. 
We selected pairs of seedlings of similar height, basal diam-
eter, and number of leaves for each treatment.

Plant material employed in this experiment was sourced 
from the same locations as the respective park authori-
ties’ ongoing restoration projects. Seedlings for Cabañeros 
National Park were obtained from the park’s nursery, while 
those for Doñana National Park were acquired from the 
Seville Council plant nursery (Junta de Andalucía). In both 
cases, the genetic material was collected within each park.

All seedlings were supplied in standard propagation 
trays, each containing 35 individual plants. Each indi-
vidual container measured 50  mm in diameter and was 
300 mm in depth and was filled with a growth medium of 
a mixture of peat and perlite (3:1) with mycorrhiza. Prior 
to planting, the plants underwent a hardening process by 
spending several months outdoors.

For soil preparation, we created conical holes with 
the aid of hoes, ensuring they had a minimum of 40 cm 
diameter and 40 cm depth. When positioning the plant, 
we ensured that the root base was appropriately cov-
ered, after which we proceeded to fill the hole and gen-
tly pressed the soil around the root system, eliminating 
any air pockets. At the time of planting, seedlings were 
labeled and their GPS coordinates recorded.

Monthly measurements were conducted from Febru-
ary to September. Planting and following measurements 
were performed 15  days earlier in Doñana (beginning of 
each month) than in Cabañeros (middle of each month). 
Each visit consisted of recording: the seedling survival sta-
tus (alive vs. dead), the damage caused by biotic and abiotic 
stress agents, and the identification of the main stress agent, 
namely wild boar, deer, rabbit, fungi, insect, or drought. The 
damage caused by wild boar was identified by overturned 
soil from rooting and plant digging or uprooting (Herrera 
1995); deer damage was visible by torn twigs from browsing; 
rabbit damage was characterized by the sharp clipping of 
terminal shoots at an angle; fungal damage was observed as 
patterns of foliar chlorosis and wilting compatible with dif-
ferent fungal infestations; insect damage was recognized as 
defoliated leaves or the presence of nests; and drought was 
evidenced by leaf dry-out (see López-Sánchez et  al. 2019; 
Perea et al. 2015a, b). Seedling damage was quantified as an 
indicator of potential stress, using a damage score ranging 
from 0 to 5: 0 = no evidence of damage; 1 = light (< 10% of 
the plant biomass damaged); 2 = low (10–30% of damaged); 
3 = intense (30–60% of damaged); 4 = heavy (60–90%); and 
5 = maximum damage (> 90% of the plant biomass dam-
aged; Fernández-Olalla et  al. 2006; Perea et  al. 2015a, b). 
Fungi, rabbits, and insects were minor stress agents in our 
study area compared to ungulates and drought and barely 
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caused the mortality of plants. For simplicity, we considered 
the main stress agent the one leading to the plant death, or, 
in the case of surviving seedlings, the one identified with the 
highest intensity score.

A final follow-up assessment was conducted 6  months 
later (February or March 2022), to evaluate seedling long-
term survival and to identify any instances of resprouting 
after the above-ground portions had dried out in the last 
visit, which were then classified as dead. To compare leaf 
biochemical responses to different treatments and plant 
ages, several non-destructive measures of chlorophyll, 
anthocyanin, and flavonoid concentrations and the nitrogen 
balance index (NBI) were taken using the leaf clamp fluo-
rescence sensor Dualex® TMScientific + , Force One (Agati 
et  al. 2016). The Dualex device estimates the chlorophyll 
content of the leaf using a transmittance ratio at two differ-
ent wavelengths, and the flavonoid and anthocyanin content 
of the leaf epidermis using a differential chlorophyll fluores-
cence ratio (ForceA-Dualex n.d.; Zhang et al. 2019). NBI is 
a proxy of nitrogen status and nitrogen to carbon allocation 
in plants based on the ratio between the chlorophyll and 
flavonol content (Cartelat et al. 2005; Agati et al. 2016). The 
Dualex measures were taken on 5 leaves previously marked, 
from top to bottom, only in alive seedlings.

2.3  Data analysis
We used multinomial models to assess the probability of 
stress agent occurrence on each park. The response vari-
able was the type of stressor (a multinomial factor) while 
predictors were time (month of main stress occurrence) 
and the treatments: acorn (with acorn vs. no acorn; here-
after Acorn), seedling age (1 vs. 2  years; hereafter Age), 
fencing (inside vs. outside the fence; only in Cabañeros; 
hereafter Fence), and their two-way interactions. Due to 
the differences in experimental design, different mod-
els were performed for each NP. The location point of 
each seedling (n = 25 points per NP) was also included as 
cluster (random effect) in the model to group correlated 
observations. To build the models, we used the function 
multinom from the R package “nnet” (Ripley and Venables 
2016). We also used the function “mnl_pred_ova” from 
the package “MNLpred” to graphically represent model 
predictions. We selected all variables from models with 
∆AIC < 2 (top models) and calculated the importance of 
each variable following Burnham and Anderson (2002). 
For this purpose, we used the functions dredge and impor-
tance “sw” from the package “MuMIn” (Bartón 2023).

Similarly, to analyze differences in seedling survival 
according to the different treatments (Acorn, Age, and 
Fence), we used Cox proportional hazard models (Cox 
1972), checking the assumptions through model diag-
nostics. Response variable was time at death (in months). 
Seedling survival was also included in the model codified 

as 0 if the seedling was alive at the end of the study (cen-
sored data) and 1 if it was dead (event). Predictors were 
the treatments and their two-way interactions. We also 
included the location point of each seedling (n = 25) as 
cluster (random effect) in the model to group correlated 
observations. We used the function coxph from the R “sur-
vival” package (Therneau 2015) to calculate the estimated 
time at death for each treatment and to disentangle differ-
ences in predicted time at death among treatments. We 
used the function survfit and ggsurvplot from the library 
“survminer” (Kassambara et al. 2017) to generate the fig-
ures. We reported full model results and compared differ-
ences among predictors and their significance levels.

In addition, to evaluate the effect of removing the acorn 
on seedling leaf biochemical variables, we computed 
least-squares means predictions from a linear model 
to compare seedlings of the same age with and without 
acorn for each month. Response variables were the four 
biochemical metrics (chlorophyll, flavonols, anthocya-
nins, and the nitrogen balance index). As predictors, we 
included the two-way interaction between month and 
treatments (Age and Acorn). We used the function lm 
from the package “stats” to perform the model and the 
function “lsmeans” to generate the contrasts. The analysis 
utilized the dataset available from the e-cienciaDatos—
UPM repository (Pelaez Beato et  al. 2024). Statistical 
analyses were performed using the R software, version 
4.1.2 (R Core Team 2024), available at www.r- proje ct. org.

3  Results
3.1  Stress agents and their effect on oak seedling survival
In Cabañeros NP, almost all seedlings (N = 197/200) expe-
rienced some type of stress; 4% of seedlings experienced 
at least one, 33% two, 49% three, and 12% four or more 
stress agents. Thus, at the end of the experiment, 95.5% 
of the seedlings died (N = 191). Inside the fence, drought 
killed 96% of the seedlings and was the only cause of 
mortality (100%). In the non-fenced treatment, 95% of 
seedlings died, with 74% affected mainly by drought, 23% 
by wild boar damage, 2% by transplanting shock, and 1% 
by lagomorphs (hare/rabbit) herbivory. When wild boar 
or rabbit was the main stress agent, no seedling survived 
and when drought was the main stress, only 4% of seed-
lings survived. Damage caused by deer, fungi, and insect 
was not strong enough to cause the death of any seedling, 
even though the damage caused in some seedlings was 
severe, with 50% of the leaves showing damage.

In Doñana (non-fenced), most seedlings (N = 99/100) 
experienced at least one stressor during the study period. 
Many of those also suffered from two (10%), three (26%), 
or even four or more stress agents (35%). The damage 
caused by these stress agents was so strong that no seed-
lings survived at the end of the experiment (all were dead 

http://www.r-project.org
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by the beginning of August). Main mortality agents were 
drought (68%) and wild boar (31%) while 1% died for 
unexpected anthropogenic causes (e.g., crushed by a car).

As expected, we found a strong spatio-temporal variation 
in the occurrence of the main stress agents in Cabañeros. 
Results from the multinomial model suggested that the 
predominant stress type was determined by Time, Fence, 
and Age (model averaged results based on ΔAIC < 2; vari-
able importance was 1 for Time and Fenced and 0.43 for 
Age). Acorn or any interaction among variables were not 
included in the top models (ΔAIC < 2).

First, at the spatial level, we found that drought was the 
only cause of mortality inside the fence, while biotic factors 
also influenced mortality outside the fence, such as wild 
boar and rabbit (Fig.  2a). Second, these factors also had a 
marked temporal pattern, with higher risk of mortality by 
wild boar at the beginning of the study (from February to 
mid-May) and higher risk of mortality by drought after the 
onset of the dry season (from June to September). Finally, 
although Age was an important factor in the model, we 
found no significant differences in the incidence of different 
stressors between 1- and 2-year-old seedlings (P = 0.154).

In Doñana (non-fenced), we also found a clear tempo-
ral pattern of the main stresses. Model selection indicated 
that only the variable Time was key to predict the main 
stress probability. Wild boars were particularly active from 
February to mid-April, reducing their activity after mid-
April (Fig. 2b). In contrast, drought dramatically increased 
from mid-April onwards, being the main cause of mortal-
ity. Finally, the effect of drought started 1 month earlier in 
Doñana compared to Cabañeros (Fig. 2).

3.2  Effect of acorn removal and plant age on the survival 
of oak seedlings

In Cabañeros, results from the proportional hazard model 
revealed no significant differences in seedling survival 
between any of the treatments at the end of the experi-
ment (Table 1 in Appendix). No significant differences were 
found between the fenced vs. non-fenced areas, as seed-
ling survival in September was very low (4.5% of the total; 
N = 9). Furthermore, seedling survival depending on plant 
age or acorn treatment was similar outside and inside the 
fence at the end of the experiment (Table 1 in Appendix).

However, as Fig. 2a shows, some temporal variation of 
seedling survival were observed within the first months 
of the study (February to May), when wild boar was the 
main mortality cause (90% of mortality caused by wild 
boar outside the fenced exclosure in Cabañeros NP). For 
this reason, we repeated the analysis using only the sub-
set of data before June (Table 1 in Appendix).

As expected, the results in Cabañeros for this time 
period showed a significant increase in seedling survival 
inside the fenced exclosure for all combinations of plant 

age and acorn presence (Table  2 in Appendix). Further-
more, before June all seedlings inside the fenced area were 
still alive (100%) while, outside, there was a significant 
decrease in survival (89%). No significant differences for 
plant Age or Acorn treatment were found outside or inside 
the fence. However, as indicated by the model coefficient 
sign, a non-significant decrease in survival probability was 
found on seedlings with acorns when compared to their 
same-age pair without acorn (80% 1-year-Acorn vs. 84% 
1-year-No Acorn; P = 0.578 and 76% 2-years-Acorn vs. 
84% 2-years-No Acorn; P = 0.698; Table 3 in Appendix).

In Doñana (non-fenced), survival results mirrored those 
in Cabañeros, although in this case, no plant survived by the 
end of the experiment (0% of the total; N = 0). Hence, cox 
proportional hazard models showed no significant differ-
ences in seedling survival at the end of the study for any of 
the treatments (Age or Acorn; Table 1 in Appendix). How-
ever, when restricting the analysis to the period of activity 
of wild boar (i.e., from February until mid-April), 1-year-
old seedling survival was significantly lower compared to 
2-year-old seedlings (P < 0.05; Fig. 3; Table 4 in Appendix). 
Thus, wild boar killed up to 40% of all 1-year-old seedlings 
and 18% of 2-years-old during the first months of study. 
Furthermore, within the 1-year-old group, a non-signifi-
cant but noticeable decrease in survival probability for the 
plants with acorns was observed (48% 1-year-acorn vs. 64% 
1-year-No Acorns; P = 0.2455; Table  4 in Appendix) but 
not for the 2-years-old group (80% 2-year-Acorn vs. 80% 
2-year-No Acorn; P = 0.81; Table 4 in Appendix).

Next year, in February and March 2022, we could con-
firm that no plant resprouted in Doñana, indicating that 
all plants died before September 2021. In Cabañeros, how-
ever, out of the nine seedlings that initially survived until 
September (N = 9/200), a 2-year-old without acorns out-
side the fence did not survive the winter, while a 1-year-old 
seedling with an acorn placed outside the fence, previously 
categorized as deceased, exhibited signs of resprouting.

3.3  Effect of seedling age and acorn treatment on leaf 
biochemical parameters

At the beginning of the study, there were no significant 
differences between seedlings of the same age assigned 
to each treatment (Acorn and Fence; Fig.  4). However, 
slightly higher values of chlorophyll and nitrogen (nitro-
gen balance index; NBI) could be observed for 2-year-
old compared to 1-year-old seedlings, although these 
differences were not significant. Overall, we observed a 
decreasing trend in content of chlorophyll and NBI over 
time and an increase in anthocyanins. Flavonol content 
did not show a clear temporal pattern.

For each month and plant age, the removal of plant 
cotyledons did not significantly affect chlorophyll, NBI, 
flavonols, or anthocyanins (Fig.  4; Table  5 in Appendix). 
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Similarly, in the fenced treatment, with no wild boar activ-
ity, we found higher chlorophyll and NBI in April in 2-year-
old seedlings than in 1-year-old seedlings. In the following 
months (at the onset of the drought season; June) 1-year-
old seedlings showed higher mortality rates (Fig. 3a).

Sample size in Doñana was too small for statistical 
analysis of leaf biochemical variables due to high wild 
boar damage at the beginning of the study and the sever-
ity of drought early in the dry season.

4  Discussion
4.1  Spatio‑temporal variation in stress agent occurrence
In this study, drought emerged as the predominant abiotic 
stressor contributing to seedling mortality, with wild boar 

as the secondary (biotic) factor, consistent with previous 
research conducted in Mediterranean environments (Rey-
Benayas 1998; Gómez-Aparicio et  al. 2008; Perea and Gil 
2014a). However, our results show a strong temporal vari-
ation in the dominance and intensity of these biotic and 
abiotic stressors that can influence the establishment of 
Quercus seedlings. Furthermore, this temporal dimension 
determined the lethality of each stressor: biotic effects on 
mortality occurred earlier and lasted longer than the abiotic 
stressors, a hierarchical effect that has also been reported 
in other studies (Cahill et  al. 2003; Gómez-Aparicio et  al. 
2008; Perea et  al. 2014b). Therefore, when performing 
forest restorations with seedlings to assist natural regen-
eration, we should evaluate not only the main biotic and 

Fig. 2 Results from the multinomial model to analyze the temporal variation of main stress occurrence outside the fence in Cabañeros (a) 
and Doñana (b). Note that data collection started 15 days later for Cabañeros compared to Doñana
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abiotic factors occurring at a particular site but also their 
time-dependent effect in order to increase the success of 
the planting (Gómez-Aparicio et al. 2012). In the context of 
global change, drought is a major cause of seedling mortal-
ity in restoration projects in Mediterranean environments 

(Rey-Benayas 1998; Gómez-Aparicio et al. 2008; Perea and 
Gil 2014a; López‐Sánchez et al. 2019). A decrease in the fre-
quency of wet years can be detrimental for recruitment of 
woody species in the Mediterranean (more than an increase 
in drought intensity), given the window of opportunity that 

Fig. 3 Seedling survival probability over time (in months) across the different treatments: (1) acorn: with (dark‑brown) and without cotyledons 
(light‑green); plant age: 1‑year vs. 2‑years‑old; and fenced: fenced vs. non‑fenced. a Results observed in Cabañeros National Park and b in Doñana 
National Park. Dashed vertical lines divides the two periods of the study where importance of main stressors differed: (1) wild boar (left) and (2) 
drought (right)
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Fig. 4 Average values of leaf biochemical parameters of the seedlings of Cabañeros NP [chlorophyll content (Chl), nitrogen balance index (NBI), 
flavonoid content (Flav), and anthocyanin content (Anth)] for the three factors: (1) age (1‑ and 2‑year‑old seedlings; dark colors vs. light colors), 
(2) acorn attached or not (brown vs. green), and (3) fenced vs. non‑fenced (left column vs. right). The standard deviation for the data set is shown. 
We displayed only data from February to June as sample size during July, August, and September was very low. Size of symbols is proportional 
to sample size
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wet years imply for seedling survival (Matías et  al. 2012). 
However, many oak seedlings will have no chance to sur-
vive the dry period if they are previously damaged by biotic 
stresses (i.e., wild boar) as very few seedlings will reach the 
onset of the dry season (Gómez and Hódar 2008; Perea and 
Gil 2014a). Reducing or controlling wild ungulate overpop-
ulation is advisable in most ecosystems (Martínez‐Jauregui 
et al. 2020; Carpio et al. 2021a, b) although might be very 
challenging, particularly in protected areas where hunting 
is typically forbidden or incompatible with other uses (rec-
reation, wildlife preservation and observation, hiking, etc.). 
However, most studies agree that oak systems are highly 
resilient and provide more useful ecosystem services than 
other systems such as shrublands (e.g., more valuable food 
sources for wildlife, shading for animals and plant spe-
cies, reduced risk of wildfire compared to shrublands, and 
increased biodiversity levels). Our results confirm that 
these ancient systems (oak savannas) are currently in dan-
ger because of high seed predation and seedling mortality, 
mostly due to ungulate management and summer drought 
(Pulido and Díaz 2005; Perea and Gil 2014a, b; Perea et al. 
2017). Our findings suggest that alternative restoration 
approaches should adapt to future scenarios of increasing 
drought and herbivory, for instance by using 2-year-old 
seedlings, which are seemingly more resistant to drought 
and less attractive to wild boars. Importantly, the use of 
evergreen oaks compared to deciduous oak species seems 
recommended as Mediterranean evergreen oaks are typi-
cally less damaged or more resistant to both herbivory and 
drought (Montserrat-Martí et  al. 2009; Perea et  al. 2017; 
López-Sánchez et al. 2019). However, further studies should 
compare the effect of acorn removal on seedling survival of 
evergreen vs. deciduous oak species.

We observed that wild boar rooting activity was higher 
at the beginning of the study (late winter and spring) than 
during the summer. This agrees with most of the stud-
ies reporting wild boar rooting activity in Mediterranean 
environments (Focardi et  al. 2000; Mayer et  al. 2000; 
Cahill et al. 2003; Gómez et al. 2003; Pulido and Díaz 2005; 
Gómez and Hódar 2008; Perea and Gil 2014a). This behav-
ior is usually attributed to the fact that late winter and early 
spring soils contained more water and are softer and easier 
to dig up by boars than in summer (Cahill et al. 2003) and 
that food availability in winter is typically lower. Also bur-
ied seeds might be easier to detect olfactorily at this time 
when they have higher water content than during the 
summer, when they are desiccated (Perea and Gil 2014a). 
Spatially, we observed that the ungulate fenced exclosure 
was the best method to increase survival of the seedlings 
during the first months after planting. However, fencing 
inside National Parks is a contentious topic because of the 
high visual impact and its associated high cost to build 
and maintain (Hayward and Kerley 2009). Fencing is very 

costly (2  m high wire fence, ca. 15–25€/m), and particu-
larly against wild boars because a tense thick wire at the 
ground level is necessary to avoid wild boar entering. In 
addition, having lots of wire exclosures in protected areas 
may cause important detrimental effects such as animal 
collision, habitat fragmentation, or decreased ecological 
connectivity (Hayward and Kerley 2009; Smith et al. 2020). 
Therefore, testing different restoration techniques such 
as the use of older seedlings and/or removing the acorns 
attached to the seedlings before planting them can poten-
tially reduce the negative impacts of wild ungulates more 
efficiently and with less economic and environmental cost.

4.2  Effect of acorn removal and plant age on the survival 
of oak seedlings

Overall, our results agreed with our main hypothesis that 
wild boars, while actively searching for acorns during early 
spring, mostly focused on seedlings with a potentially 
nutrient-filled acorn still attached. As seedlings age (from 
1 to 2  years), acorns become rotten and less nutritious 
(Gómez et  al. 2003) and therefore, less attractive to wild 
boar. However, this preference was only found in Doñana 
(Fig. 3b) where two main factors (1) higher wild boar den-
sities and (2) decreased soil resistance associated to sandy 
soils (compared to the rocky and highly clay dominant soils 
of Cabañeros) may explain the increased seedling damage. 
The combined effect of both factors may enable wild boar 
to overturn extensive areas in Doñana with minimum effort 
(see Fern et al. 2020). Thus, the higher damage inflicted in 
Doñana has probably facilitated the detection of a signifi-
cant trend in the selection pattern of wild boar.

Furthermore, we observed a hierarchical pattern of wild 
boar preferring 1-year-old seedlings over 2-year-old seed-
lings and, within each age group, a non-significant but 
consistent preference toward those with the acorn still 
attached, especially among the 1-year-old group. Indeed, 
as acorns decompose, they give off an odor that can attract 
animals (Colville et al. 2012; Löf et al. 2019). However, our 
results indicate that acorn presence may not be as relevant 
as plant age. Fern et al. (2020) found that wild boars uproot 
seedlings more frequently if they recognize the species as a 
good food, and thus, their decisions may be influenced by 
their previous experiences. Similarly, we hypothesize that 
wild boar could be more attracted to certain plant traits 
based on experiences finding nutritious acorns in younger 
plants. Other authors have suggested that freshly over-
turned or disturbed soil around the seedlings is their main 
attractant (Mayer et al. 2000; Skoták et al. 2021). Although 
we believe this could be true in some cases and it is a fac-
tor to consider after digging the holes for planting, in this 
study, wild boar displayed a clear selective pattern toward 
1-year-old seedlings in the early period after planting (Feb–
May). Furthermore, Mayer et  al. (2000) found that wild 
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boar did not randomly uproot all nine species used in their 
experimental restoration project. In contrast, only four 
of the nine species were affected by wild boar, being two 
of them oak species. Out of these four species, three had 
been uprooted and had their rootstock consumed: cher-
rybark oaks (Q. pagodaefolia Raf.), swamp chestnut oak 
(Q. michauxii Nutt.), and water hickory (Carya aquatica 
(F.Michx) Nutt.). It is noteworthy that these three species 
are recognized as being preyed upon by wild boars for their 
seeds. Thus, we strongly believe that, in their search, wild 
boars are showing a preference for some species that they 
feed on, although sometimes they may also investigate dis-
turbed soils. In summary, a combination of ecological fac-
tors likely influence wild boar’s decision to uproot specific 
seedlings (Mayer et al. 2000; Fern et al. 2020; Skoták et al. 
2021). Unfortunately, sample size in our study did not allow 
for strong conclusions on the interaction between the main 
treatments (i.e., age and acorn). Nevertheless, our findings 
do reveal a noteworthy trend of preference toward plants 
with acorns still attached, particularly within the 1-year-old 
group. We are confident that future investigations would 
gain greater insight by increasing the sample size.

Unfortunately, water stress is a very difficult abiotic fac-
tor to overcome, and droughts are expected to increase 
in the Mediterranean basin due to climate change (IPCC 
2021). To enable seedlings to resist water stress during 
the summer, some authors recommend applying irri-
gation during the peak of the dry season (Rey-Benayas 
1998; Siles et  al. 2010) or applying drought hardening 
in the nursery to gain drought tolerance and transplant-
ing performance in some oak species (Villar-Salvador 
et  al. 2004). Further experimental studies on the recog-
nized benefits of irrigation during the first summer (Rey-
Benayas 1998; Siles et al. 2010) should also quantify the 
possible detrimental effect of this treatment in ungulate-
dominated areas as it may imply a trade-off, by re-hydrat-
ing the acorn, and thus making the acorn easier to detect 
olfactorily by wild boars (Perea and Gil 2014a).

4.3  Effect of acorn removal and plant age on leaf 
biochemical traits

Additionally, we found that removing the cotyledon 
reserves did not affect biochemical traits of the seedlings 
(i.e., content of chlorophyll, NBI, flavonols, and anthocy-
anin). Indeed, these results are in line with other studies, 
which have also demonstrated that removing the cotyle-
dons to oak seedlings does not affect seedling growth or 
survival (Sonesson 1994; Yi et  al. 2015), as long as acorn 
removal is performed when the seedling is no longer 
heavily dependent on these resources (i.e., 1  month after 
emergence; Li and Ma 2003). While more research is 
needed to determine the positive impact of removing the 
acorn in wild boar-dominated environments, the current 

evidence suggests that, at least, it is not harmful to the 
future survival and biochemical traits of the seedling. This 
is important because acorn removal in 1-year-old seed-
lings would not apparently involve any additional cost to 
this restoration approach compared to fencing or waiting 
for another year (2-year-old seedlings) to plant. However, 
2-year-old seedling performed better for some biochemi-
cal variables such as chlorophyll and nitrogen (Fig. 4), two 
important parameters in determining plant vigor (Capó 
et  al. 2024). These differences seem negligible in early 
spring and become particularly larger during the summer 
drought, suggesting greater performance for 2-year-old 
seedling compared to 1-year-old seedling under dry condi-
tions. This better performance is eventually transferred to 
the overall seedling survival, suggesting the use of 2-year-
old seedlings in the future Mediterranean scenarios with 
longer and more severe summer droughts (IPCC 2021).

5  Conclusions
This study provides valuable insights into the role of wild 
boar as a limiting agent for oak recruitment and its nega-
tive impact on the management of restoration projects. 
A combination of factors, such as age and acorn removal, 
can significantly influence the level of wild boar damage 
on oak seedlings and their overall survival.

The main findings of this study are:

• Two-year-old seedlings were less likely to be dam-
aged by wild boars than 1-year-old seedlings in areas 
with high wild boar abundance and sandy soils, such 
as Doñana NP but not on the clay dominant soils of 
Cabañeros NP.

• Despite the lack of statistical significance, a trend 
suggesting decreased survival probability was 
observed in seedlings of the same age when acorns 
were present compared to those without acorns.

• Since the removal of acorns did not appear to nega-
tively influence leaf biochemical traits, our findings 
imply that, for restoration projects with 1-year-old 
seedlings, detaching the acorn could be a useful man-
agement strategy to reduce wild boar damage.

• Finally, 2-year-old seedlings seem to increase resilience 
against drought in both sites. Thus, planting 2-year-
old seedlings instead of 1-year-old seedlings could be a 
good strategy to avoid damage by wild boar just after 
planting and improve drought resistance.

Early mortality and, thus, sample size was one of the 
main limitations of our study and further experimental 
restoration projects should focus on planting higher num-
ber of seedlings per treatment. These investigations are 
important due to the significant damage that both wild 
boars and summer drought may inflict on oak seedlings.
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Appendix

Fig. 5 a Meteorological data from the Porzuna weather station (14.3 km away from the plantation in Cabañeros) obtained through the SIAR (Irrigation 

Advisory Service of Castilla‑La Mancha) of the Consejería de Agricultura, Agua y Desarrollo Rural de Castilla‑La Mancha (Department of Agriculture, 
Water and Rural Development of Castilla‑La Mancha). b Meteorological data from the Almonte station (14.1 km away from the plantation in Doñana) 
obtained through the RIA (Red de Información Agroclimática de Andalucía) of the Junta de Andalucía. P (mm): precipitation in millimeters. Tm (°C): 
mean temperature in degrees Celsius

Fig. 6 Wild boar uprooting one of the seedlings of the experiment caught by one of the trap cameras set up for the experiment (date: 16/04/2021)
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Table 1 Pair‑wise comparison of survival during the whole study period (February–September 2021) based on Cox proportional hazard 
model significance levels. Comparisons between 1‑ and 2‑year‑old seedlings with or without acorns and between seedlings with and 
without acorns of a given age were analyzed separately inside and outside the fence in Cabañeros and outside the fence in Doñana. yr 
year

Site Contrasts coef SE z ratio P value

Cabañeros NP (inside the fence) 1 yr, Acorn–1 yr, No Acorn 0.099888 0.322448 0.310 0.757

1 yr, Acorn–2 yr, Acorn −0.02327 0.228537 −0.102 0.919

1 yr, Acorn–2 yr, No Acorn −0.22452 0.215296 −1.043 0.297

1 yr, No Acorn–2 yr, No Acorn −0.32441 0.196004 −1.655 0.098

1 yr, No Acorn–2 yr, Acorn −0.12316 0.308035 −0.400 0.689

2 yr, Acorn–2 yr, No Acorn −0.20125 0.243527 −0.826 0.409

Cabañeros NP (outside the fence) 1 yr, Acorn–1 yr, No Acorn −0.02538 0.217206 −0.117 0.907

1 yr, Acorn–2 yr, Acorn 0.103435 0.250238 0.413 0.679

1 yr, Acorn–2 yr, No Acorn −0.23603 0.289015 −0.817 0.414

1 yr, No Acorn–2 yr, No Acorn −0.21065 0.288046 −0.731 0.465

1 yr, No Acorn–2 yr, Acorn 0.128813 0.281482 0.458 0.647

2 yr, Acorn–2 yr, No Acorn −0.33947 0.192479 −1.764 0.078

Doñana NP (outside the fence) 1 yr, Acorn–1 yr, No Acorn −0.03385 0.216701 −0.156 0.876

1 yr, Acorn–2 yr, Acorn −0.04069 0.192753 −0.211 0.833

1 yr, Acorn–2 yr, No Acorn −0.022 0.206007 −0.107 0.915

1 yr, No Acorn–2 yr, No Acorn 0.040367 0.193682 0.208 0.835

1 yr, No Acorn–2 yr, Acorn 0.002412 0.253994 0.009 0.992

2 yr, Acorn–2 yr, No Acorn 0.037955 0.227939 0.167 0.868

Table 2 Pair‑wise comparison of survival before the onset of the dry season based on Cox proportional hazard model significance 
levels. Comparisons are among seedlings of 1–2 years old, with or without acorns, inside or outside the fence in Cabañeros. yr year

Fenced‑1 yr‑Acorn Fenced‑1 yr‑No Acorn Fenced‑2 yr‑Acorn Fenced 2 yr‑No Acorn

P < 0.001 P < 0.001 P < 0.001 P < 0.001 No Fenced‑
Acorn‑1 yr

P < 0.001 P < 0.001 P < 0.001 No Fenced‑No 
Acorn‑1 yr

P < 0.001 P < 0.001 No Fenced‑
Acorn‑2 yr

P < 0.001 No Fenced‑No 
Acorn‑2 yr

Table 3 Pair‑wise comparison of survival before the onset of the dry season based on Cox proportional hazard model significance levels. 
Comparisons are made among all combinations of 1–2‑year‑old seedlings, with or without acorns outside the fence in Cabañeros. Model 
coefficient and P values are indicated. Positive coefficients indicate an increased survival of the treatment in the columns compared to 
the treatments in the rows. yr, year

1 yr‑No Acorn 2 yr‑Acorn 2 yr‑No Acorn

0.233
P = 0.578

−1.51 ×  10−15

P = 1
0.253
P = 0.649

1 yr‑Acorn

−0.231
P = 0.578

0.022
P = 0.974

1 yr‑No Acorn

0.253
P = 0.698

2 yr‑Acorn
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Table 4 Pair‑wise comparison of survival before the onset of the dry season (April) based on Cox proportional hazard model significance 
levels. Comparisons are made among all combinations of seedlings of 1–2 years old, with or without acorns outside the fence area in 
Doñana. Positive sign means the risk of death is higher for the treatment in the rows that the one on the columns (i.e., 1 yr‑Acorn has 
higher risk than 1 yr‑No Acorn). yr year

1 yr‑No Acorn 2 yr‑Acorn 2 yr‑No Acorn

0. 398
P = 0.255

1.008
P = 0.006

1.023
P = 0.024

1 yr‑Acorn

0.675
P = 0.231

0.722
P = 0.023

1 yr‑No Acorn

0.047
P = 0.940

2 yr‑Acorn

Table 5 Least squares mean comparison of leaf biochemical traits between seedlings with and without acorn, at different months, and 
for each plant age (1‑ or 2‑year‑old; yr, year)

Site Biochemical 
traits

Age Month Estimate—contrast 
(Acorn vs. No Acorn)

SE df t ratio P value

Cabañeros (inside 
the fence)

Chl 1 yr Feb −0.253 0.392 6 −0.646 1

Mar −0.54 0.392 6 −1.378 0.994

Apr −0.64 0.392 6 −1.634 0.972

May −0.593 0.392 6 −1.514 0.985

Jun −1.211 0.392 6 −3.091 0.464

Jul −1.454 0.392 6 −3.713 0.277

Aug −0.778 0.392 6 −1.986 0.897

2 yr Feb 0.638 0.392 6 1.629 0.973

Mar 0.351 0.392 6 0.897 1

Apr 0.251 0.392 6 0.64 1

May 0.298 0.392 6 0.761 1

Jun −0.32 0.392 6 −0.817 1

Jul −0.563 0.392 6 −1.438 0.991

Aug 0.113 0.392 6 0.288 1

Cabañeros (inside 
the fence)

NBI 1 yr Feb −0.1 0.269 6 −0.374 1

Mar −0.268 0.269 6 −0.996 1

Apr −0.361 0.269 6 −1.342 0.995

May −0.299 0.269 6 −1.112 0.999

Jun −0.813 0.269 6 −3.026 0.489

Jul −0.91 0.269 6 −3.388 0.365

Aug −0.475 0.269 6 −1.767 0.95

2 yr Feb 0.44 0.269 6 1.637 0.972

Mar 0.273 0.269 6 1.015 1

Apr 0.18 0.269 6 0.669 1

May 0.242 0.269 6 0.899 1

Jun −0.273 0.269 6 −1.015 1

Jul −0.37 0.269 6 −1.377 0.994

Aug 0.066 0.269 6 0.244 1
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Site Biochemical 
traits

Age Month Estimate—contrast 
(Acorn vs. No Acorn)

SE df t ratio P value

Cabañeros (inside 
the fence)

Anth 1 yr Feb 0.003 0.008 6 0.386 1

Mar 0.006 0.008 6 0.77 1

Apr 0.006 0.008 6 0.715 1

May 0.003 0.008 6 0.419 1

Jun 0.004 0.008 6 0.556 1

Jul 0.021 0.008 6 2.689 0.624

Aug 0.013 0.008 6 1.573 0.98

2 yr Feb −0.005 0.008 6 −0.571 1

Mar −0.001 0.008 6 −0.186 1

Apr −0.002 0.008 6 −0.241 1

May −0.004 0.008 6 −0.538 1

Jun −0.003 0.008 6 −0.4 1

Jul 0.014 0.008 6 1.732 0.957

Aug 0.005 0.008 6 0.617 1

Cabañeros (inside 
the fence)

Flav 1 yr Feb −0.001 0.01 6 −0.065 1

Mar −0.002 0.01 6 −0.189 1

Apr 0 0.01 6 0.015 1

May −0.002 0.01 6 −0.162 1

Jun −0.002 0.01 6 −0.237 1

Jul 0.023 0.01 6 2.339 0.771

Aug 0 0.01 6 −0.003 1

2 yr Feb −0.005 0.01 6 −0.465 1

Mar −0.006 0.01 6 −0.59 1

Apr −0.004 0.01 6 −0.385 1

May −0.006 0.01 6 −0.562 1

Jun −0.006 0.01 6 −0.637 1

Jul 0.019 0.01 6 1.939 0.91

Aug −0.004 0.01 6 −0.403 1

Cabañeros (outside 
the fence)

Chl 1 yr Feb 0.172 0.244 6 0.706 1

Mar 0.102 0.244 6 0.419 1

Apr 0.018 0.244 6 0.072 1

May 0 0.244 6 0.002 1

Jun −0.132 0.244 6 −0.541 1

Aug −0.79 0.244 6 −3.243 0.411

2 yr Feb 0.257 0.244 6 1.056 1

Mar 0.462 0.244 6 1.895 0.922

Apr 0.392 0.244 6 1.608 0.976

May 0.307 0.244 6 1.261 0.998

Jun 0.29 0.244 6 1.191 0.999

Aug 0.158 0.244 6 0.648 1
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Site Biochemical 
traits

Age Month Estimate—contrast 
(Acorn vs. No Acorn)

SE df t ratio P value

Cabañeros (outside 
the fence)

NBI 1 yr Feb −0.501 0.244 6 −2.054 0.876

Mar 0.547 0.244 6 2.245 0.808

Apr 0.16 0.181 6 0.88 1

May 0.094 0.181 6 0.52 1

Jun −0.027 0.181 6 −0.15 1

Aug −0.022 0.181 6 −0.119 1

2 yr Feb −0.235 0.181 6 −1.297 0.997

Mar −0.524 0.181 6 −2.889 0.542

Apr 0.194 0.181 6 1.071 1

May 0.332 0.181 6 1.832 0.937

Jun 0.267 0.181 6 1.472 0.989

Aug 0.145 0.181 6 0.802 1

Cabañeros (outside 
the fence)

Anth 1 yr Feb 0.151 0.181 6 0.833 1

Mar −0.063 0.181 6 −0.345 1

Apr −0.351 0.181 6 −1.937 0.911

May 0.367 0.181 6 2.023 0.885

Jun 0.003 0.004 6 0.579 1

Aug 0 0.004 6 0.048 1

2 yr Feb 0 0.004 6 −0.002 1

Mar 0.001 0.004 6 0.245 1

Apr −0.002 0.004 6 −0.49 1

May 0.014 0.004 6 3.12 0.454

Jun 0.012 0.004 6 2.735 0.605

Aug −0.005 0.004 6 −1.196 0.999

Cabañeros (outside 
the fence)

Flav 1 yr Feb −0.008 0.004 6 −1.726 0.958

Mar −0.008 0.004 6 −1.776 0.949

Apr −0.007 0.004 6 −1.529 0.984

May −0.01 0.004 6 −2.264 0.8

Jun 0.006 0.004 6 1.345 0.995

Aug 0.004 0.004 6 0.961 1

2 yr Feb −0.003 0.008 6 −0.38 1

Mar 0.001 0.008 6 0.091 1

Apr 0.005 0.008 6 0.592 1

May 0.002 0.008 6 0.31 1

Jun 0.014 0.008 6 1.788 0.946

Aug 0.02 0.008 6 2.61 0.657
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