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Abstract 

Key message Accurate volume estimation in Eucalyptus plantation stands was achieved by a linear model using 
SPOT and Landsat multispectral imagery, specifically texture indices and pixel-scale NDVI time integrals, which reflect 
the local plantation growth history. Spatial modelling techniques such as Kriging with External Drift and Generalized 
Additive Model slightly improved predictions by accounting for spatial correlation of volume between sample points.

Context Forest inventories are widely used to estimate stand production. To capture the inherent spatial variability 
within stands, spatial modelling techniques such as Kriging with External Drift (KED) and the generalized additive 
model (GAM) have emerged. These models incorporate information on spatial correlation and auxiliary variables 
that can be obtained from satellite imagery.

Aims Our study explored the use of reflectance data from SPOT and Landsat multispectral imagery. We focused 
on texture indices and temporal integration of vegetation indices as auxiliary variables in KED and GAM to predict 
stem volume of fast-growing Eucalyptus sp. plantations in Brazil.

Methods The components extracted from the high-resolution SPOT-6 image included spectral band values, band 
ratio metrics, key vegetation indices (NDVI, SAVI, and ARVI), texture measurements, and indices derived from texture 
analysis. Additionally, we included the accumulated NDVI time series acquired from Landsat 5, 7, and 8 satellites 
between the planting date and the forest inventory measurement date.

Results The best linear model of stem volume using remotely sensed predictors gave an R-squared value of 0.95 
and a Root Mean Square Error (RMSE) of 12.44  m3/ha. The R-squared increased to 0.96 and the RMSE decreased to 10.6 
 m3/ha when the same predictors were included as auxiliary variables in the KED and GAM spatial models.

Conclusion The linear model using remotely sensed predictors contributed most to volume prediction, but the addi-
tion of spatial coordinates in the KED and GAM spatial models improved local volume predictions.
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1 Introduction
Short rotation forest plantations are expanding to meet 
the demand for paper, cellulose, industrial wood (such as 
particle board) and coal for industry (e.g., iron and steel). 
In Brazil, there were 9.55 million hectares of tree plan-
tations in 2020, with the majority being eucalypt plan-
tations, covering 7.47 million hectares (IBA 2021). The 
development of the forestry sector necessitates sustain-
able management and information about existing for-
est resources. Stakeholders require monitoring of forest 
resources for wood production assessment, harvest pre-
vision, sanitary control, carbon accounting, and evalua-
tion of biotic and abiotic damages.

Forest inventories and field surveys remain the pri-
mary methods for monitoring forest plantations. Forest 
inventories involve field measurements of tree diameters 
and heights of small plots following a plantation sam-
pling design. These measurements are then used in allo-
metric relationships to predict the volume of individual 
trees, which is subsequently summed for all trees in the 
plot and divided by the plot area to estimate the volume 
per unit area. Stand-level values are typically obtained 
by averaging the plot-level values within the stand. The 
method assumed that all plots are independent and 
equally weighted, and therefore do not consider the spa-
tial dependence of field data (Viana et al. 2012; Castillo-
Santiago et al. 2013). Additionally, despite the assumption 
of homogeneity of planted forests, Castillo-Santiago et al. 
(2013) showed that it was necessary to consider the nat-
ural variations that occur in the structure of vegetation. 
Spatial variability within and between plantation stands, 
particularly in fast-growing species such as Eucalyptus 
in Brazil, can be influenced by various factors, includ-
ing different soil conditions, topography, planting dates, 
genetic materials, management, and past events such as 
diseases and storms (Marsden et  al. 2010a, b; Le Maire 
et al. 2011a, b, c; Zhou et al. 2013; le Maire et al. 2019). 
Thus, although the assumption of independence between 
inventory variables within and between stands is com-
monly used, knowledge of the spatial variations within a 
forest (both within and between stands) can improve the 
prediction of the variable of interest (Zhou et al. 2013).

Various statistical techniques are used to model spa-
tial variations found in the sampled data (Propastin 
2012). Geostatistical techniques facilitate the characteri-
zation of the spatial variability present in a data struc-
ture, including the spatial correlation between sampling 
units. This information can then be used to improve the 

prediction of variables of interest at unsampled loca-
tions, thereby enhancing the accuracy of stand-scale 
or regional-scale averages. Numerous studies have 
used geostatistical interpolation to account for spatial 
dependence between forest inventory plots. This method 
falls within the model-based inferential framework 
described by Ståhl et al. (2016). Geostatistical interpola-
tion was used to predict variables such as volume, bio-
mass, and diameter increments, as well as to examine the 
spatial continuity of the parameter of interest (Tesfami-
chael et al. 2009; Viana et al. 2012; Galeana-Pizaña et al. 
2014; Scolforo et al. 2016; Silveira et al. 2019).

Correlations may exist between the forest inventory 
variables, such as tree height and volume, and information 
extracted from satellite images. This allows for a direct, 
spatially explicit prediction of these variables at the reso-
lution of the satellite image (Lu 2006; Avitabile et al. 2012; 
Castillo-Santiago et  al. 2013). Satellite images have been 
widely used to map structural forest parameters, such as 
above-ground volume and biomass (Zhang et  al. 2014; 
Zhao et al. 2016; Lochhead et al. 2018; Souza et al. 2019). 
More specifically, some studies used image texture (Avita-
bile et al. 2012; Rodriguez-Galiano et al. 2012; Dube and 
Mutanga 2015), image time series (Le Maire et al. 2011a, 
b, c; Boisvenue et al. 2016), or other types of sensors such 
as radar (Baghdadi et al. 2015; Zhao et al. 2016).

Geostatistical interpolation techniques, such as Krig-
ing with External Drift (KED, also called Universal Krig-
ing), use ancillary data, including variables derived from 
satellite imagery, to explain some of the spatial vari-
ability observed in the data and complement the inter-
polation process (Goovaerts 1997). KED combines the 
strengths of both kriging and regression methods. Krig-
ing models the spatial patterns of the variable of inter-
est, while multivariate regression models the influence 
of external predictors. This combination allows for more 
accurate prediction of the variable of interest at unsam-
pled locations, especially when the multivariate regres-
sion model provides a precise prediction of the variable 
of interest. KED is preferred over classical co-kriging 
when a strong linear relationship exists between the pri-
mary and secondary variables (Wackernagel 2003).

The generalized additive model (GAM) is an exten-
sion of the generalized linear model. It adds a smoothing 
function is added to the explanatory variable to make the 
relationship between the response variable and the auxil-
iary variables more flexible (Hastie and Tibshirani 1986). 
The shape of this relationship does not need to be known 
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beforehand, but it can be estimated through smoothing 
curves from the dataset. The smoothing functions take 
into account the geographic coordinates. Compared to 
KED it handles any non-linear relationships between the 
auxiliary variables and the spatial values being predicted. 
GAMs are semi-parametric and multi-dimensional and 
generally use penalized splines for the smoothing func-
tion. When developing ecological models, some studies 
use GAM to calculate wood stock, forest characteristics, 
biomass, and other related factors (Ahrens et  al. 2020; 
Alberdi et al. 2020; Fassnacht et al. 2021).

Geostatistical models that incorporate spatial auxil-
iary variables require known variables at each location 
of model application. Satellite multispectral images can 
provide such information, for example, through spectral 
vegetation indices, which are mathematical formulations 
that combine reflectance of several spectral bands. Veg-
etation indices are typically highly correlated with green 
vegetation within the pixels, while minimizing the con-
tributions of the soil and sun angle (Lu 2006; Cutler et al. 
2012). However, vegetation indices often have limited 
direct spatial correlation with forest inventory variables, 
indicating the need to consider alternative co-variables to 
improve the performance of geostatistical models. This is 
especially true for short rotation plantation forests such 
as Eucalyptus plantations in Brazil. These forests are tem-
porally dynamic, with high growth rates averaging 40 
 m3   ha−1   year−1. They reach canopy height of over 20 m 
when they are harvested at approximately 7  years old. 
The aim of this study is to investigate the potential use of 
image texture computed on very high-resolution satellite 
images, and historical information about the forest plan-
tation since planting date obtained from satellite image 
time series, as co-variables in geostatistical models.

KED and GAM geostatistical models were calibrated to 
predict stem wood volume  (m3  ha−1) in Eucalyptus planta-
tions. We added several co-variables computed from satel-
lite images, including band reflectances, simple band ratios, 
vegetation indices, texture indices, and more complex vari-
ables computed from the integration of time series of veg-
etation indices. The objective was to provide more accurate 
predictions of wood volume within and between stands. 

The specific objectives were (a) to assess the direct correla-
tion between variables derived from satellite imagery and 
stem volume; (b) to evaluate their effectiveness as auxiliary 
variables in fitting KED and the GAM geostatistical models 
for volume prediction; and (c) to compare the volumes pre-
dicted by the linear, KED, and GAM models with the vol-
umes observed on randomly selected forest inventory plots 
not used in model calibration.

2  Material and methods
2.1  Study site and forest inventory data
The study was conducted in Eucalyptus sp. stands located 
in the southern region of Mato Grosso do Sul state, near 
the city of Ribas do Rio Padro. The area has an average 
altitude of 374 m and a tropical climate (Aw type accord-
ing to the Köppen classification) characterized by a dry 
season in the winter with an average precipitation of 
1241 mm and an average temperature of 24.2 °C.

The forest inventory data was collected in August 
2018 from 211 circular plots of 500  m2, systematically 
distributed on a pre-defined grid across the landscape, 
with one plot every ~ 722 m in the study area. All plots 
were geo-referenced using GPS measurements from the 
central point of each plot. In the study area, all stands 
were less than 4 years old in August 2018 (Table 1). The 
inventory consisted of measuring the circumference at 
breast height (CBH—1.3  m above the ground level) for 
all trees in the circular inventory plot and the tree height 
of a central sub-sample of 25% of the trees in the plot. 
Dominant height was calculated as the mean of the five 
trees with the largest CBH. Unmeasured tree heights 
were predicted using the Curtis hypsometric model. 
Stem volumes of the trees were then predicted by age 
class using a company-calibrated Schöepfer Fifth-Degree 
Polynomial volume projection equation specific to the 
genetic material and calibrated in the same region based 
on destructive measurements of trees. These equations 
are generally very precise in these clonal plantations 
(Scolforo et  al. 2019). The plot volume was calculated 
by adding the volumes of each tree in the plot. The age 
information was incorporated as a covariable in the lin-
ear models (see section “2.4”).

Table 1 Summary of planting characteristics and descriptive statistics of average volume data per plot in the study site 

SD Standard Deviation, CV Coefficient of variation, i.e., SD divided by average stem volume

Age (years) Area (ha) Nb of 
clones

Number of 
plots

Stem volume
(m3  ha−1)

Minimum Maximum Average SD CV

By age class 1.5–2.5 7565.88 8 150 1.16 76.50 25.73 15.16 0.59

2.5–3.5 895.24 7 37 82.41 174.77 121.98 21.61 0.18

3.5–4.5 970.09 1 23 117.68 249.84 180.40 32.56 0.18

Total 1.5–4.5 9431.21 11 211 1.16 249.84 59.79 58.85 0.98
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2.2  Image processing
A satellite image from the commercial observation satel-
lite SPOT-6 was acquired in August 2018, during the same 
period as the forest inventory. The SPOT-6 satellite images 
have four broadbands (Blue, Green, Red, and Near Infra-
red) at a spatial resolution of 6 m and a panchromatic band 
at 1.5 m resolution. The radiometric resolution is 12 bits 
per pixel. The broadbands were merged with the panchro-
matic band using a pansharpenning algorithm, resulting in 
a multispectral image of 1.5 m spatial resolution. The top-
of-atmosphere reflectance was used directly in the analysis 
since only one image was used in this study. There were no 
clouds in the area of interest. The final image was georefer-
enced based on ground control points.

A time series of images from Landsat satellites was 
used, covering the period from January 2000 to August 
2018. The time series included 30  m resolution multi-
spectral images from Landsat-5 Thematic Mapper (TM), 
Landsat-7 Enhanced Thematic Mapper Plus (ETM +), 
and Landsat-8 Operational Land Imager (OLI). The 
atmospherically corrected Surface Reflectance images 
were produced by the United States Geological Sur-
vey (USGS). They include information on eventual 
sensor failure, cloud and cloud shadow masks. To elimi-
nate residual clouds or cloud shadows, the masks were 
expanded with a supplementary buffer of 150 m (5 pix-
els). Reflectances from three different Landsat sensors (5, 
7, and 8) were inter-calibrated following Roy et al. (2016). 
The Landsat Surface Reflectance product was obtained 
from Google Earth Engine (Collection 1 Tier 1 dataset).

The SPOT-6 and Landsat images were resampled to 
the same resolution of 7.5 m to facilitate post-treatments. 
This resolution was chosen as it can be easily obtained 
from the SPOT-6 1.5  m resolution image and from the 
Landsat 30 m resolution image. Additionally, this resolu-
tion is also compatible with the size of an inventory plot 
(~ 3 × 3 pixels), and speeds up the texture computation on 
the SPOT-6 image. The resampling method used was a 
simple nearest neighbor algorithm.

Five sets of variables were extracted and calculated from 
SPOT-6 and/or Landsat images. These sets include (i) 
reflectance of spectral bands, (ii) spectral band ratios, (iii) 
vegetation indices, (iv) textural indices, and (v) integrals of 
vegetation indices of satellite time series. Table 2 provides 
a list of the variables obtained and their descriptions.

The SPOT-6 image was used to compute the four spec-
tral bands, twelve simple ratios of these bands, and three 
commonly used vegetation indices: NDVI (Tucker 1979), 
SAVI (Huete 1988), and ARVI (Kaufman and Tanré 1996).

Additionally, textural indices were computed using the 
gray level co-occurrence matrix (GLCM) proposed by 
Haralick et al. (1973), which is a widely used method for 
extracting texture from images. Four second-order texture 

measurements were obtained, for each spectral band: con-
trast (CON), correlation (COR), energy (ENE), also known 
as second angular momentum, and homogeneity (HOM). 
These measures are commonly used and considered rel-
evant in remote sensing studies (Rodriguez-Galiano et al. 
2012). The GLCM was calculated on the resampled 7.5 m 
resolution SPOT-6 image, using a 3 × 3 pixel window. This 
calculation was performed in the four angles of orienta-
tion of the neighboring pixel (0°, 45°, 90° and 135°) with 
an omnidirectional approach to cover the various types 
of spatial relationships among the pixels. This window 
definition was also used in the study by Sarker and Nichol 
(2011). Finally, the average of the values computed in the 
four directions was determined. The spectral and textural 
indices were combined to generate indices (Table 2).

The NDVI was calculated for each pixel in the Landsat 
image time series. The NDVI time series for each Landsat 
pixel were smoothed over time, using a cubic spline func-
tion. This smoothing technique eliminates small varia-
tions that occur on a short time scale, which do not reflect 
changes in the canopy, such as residual atmospheric effects 
(le Maire et al. 2011a, b, c). The NDVI time series provided 
several variables: the minimum and maximum values dur-
ing the rotation, and the integrals of the NDVI smoothed 
curve between a starting date (e.g., planting date) and an 
ending date (e.g., inventory date) (Table 2). These variables 
were selected based on previous studies by Marsden et al. 
(2010a, b) and le Maire et al. (2011a, b, c). The image com-
ponents were extracted using R (R Core Team 2021) and the 
following packages: ’rgdal’, ’maptools’, ’raster’, ’sp’ and ’glcm’.

2.3  Linear models for stem volume prediction and variable 
selection

First, we develop a multilinear regression model to pre-
dict stem volume directly from the spatial variables listed 
in Table 2. Due to the large number of variables (86) and 
possible multicollinearity, variable selection was necessary 
to obtain a simpler linear regression model for stem vol-
ume prediction. Different regression methods, all includ-
ing variable selection, were tested (Kuhn 2008): forward 
stepwise selection (mod_fw), backward stepwise selec-
tion (mod_bw), sequential replacement (mod_sw), Sparse 
Partial Least Squares (mod_spls), Spike and Slab Lasso 
(mod_sl), Ridge (mod_rd), Lasso (mod_ls), and Elastic 
Net (mod_en). These methods have different theoretical 
basis, which may lead to different selected variables and 
model accuracies, underlining the importance to test a 
range of models. To evaluate the predictive performance 
of all tested models to predict plot-level stem volume, the 
plots were split into two partitions, 80% for training and 
20% for validation. The Root Mean Square Error (RMSE), 
the Adjusted Coefficient of Determination  (R2 adj), and 
the corrected Akaike Information Criterion (AICc) were 
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Table 2 Description of the 86 variables computed and extracted from the SPOT-6 and Landsat 5, 7, and 8 satellites images 

N is the number of variables combinations for a given line in the table

Abbreviation Source Variable type N Description of image variables

AGE Ancillary 1 Age of the stand at the time of the forest inventory

B1, B2, B3, B4 SPOT-6 Spectral bands 4 Blue (B1), green (B2), red (B3), near-infrared (B4) reflectances

RAT_Bx_By SPOT-6 Simple rations 12 Simple ratio: RAT_Bi_Bj = Bi/Bj, i ≠ j, with (Bi,Bj) being all pairs of bands

NDVI SPOT-6 Vegetation index 1 Normalized Difference Vegetation Index (B4 − B3)/(B4 + B3)

SAVI SPOT-6 Vegetation index 1 Soil Adjusted Vegetation Index (B4-B1)/(B4 + B1 + L) *(1 + L), where L = 0.5

ARVI SPOT-6 Vegetation index 1 Atmosphere Resistant Vegetation Index (B4 − B3 − γ*( B3 − B1)) / (B4 + B3 − γ*(B3 − B1)), where γ = 1

CON_Bx SPOT-6 Texture index 4 Band’s contrast (local variation of the intensity of a pixel and its neighbor): CON_B1 (band 1), 
CON_B2 (band 2), CON_B3 (band 3), CON_B4 (band 4)

COR_Bx SPOT-6 Texture index 4 Band’s correlation (linear dependence in the reflectance between a pixel and its neighbor): 
COR_B1 (band 1), COR_B2 (band 2), COR_B3 (band 3), COR_B4 (band 4)

ENE_Bx SPOT-6 Texture index 4 Band’s energy (evaluates the uniformity of the texture): ENE_B1 (band 1), ENE_B2 (band 2), 
ENE_B3 (band 3), ENE_B4 (band 4)

HOM_Bx SPOT-6 Texture index 4 Band’s homogeneity (measures the regularity present in the image): HOM_B1 (band 1), HOM_B2 
(band 2), HOM_B3 (band 3), HOM_B4 (band 4)

MUL_Bx_CON_Bx SPOT-6 Texture index 4 Product of band reflectance and band contrast: MUL_B1_CON_B1 (B1 x CON_B1), MUL_B2_
CON_B2 (B2 x CON_B2), MUL_B3_CON_B3 (B3 x CON_B3), MUL_B4_CON_B4 (B4 x CON_B4)

MUL_Bx_COR_Bx SPOT-6 Texture index 4 Product of band reflectance and band correlation: MUL_B1_COR_B1 (B1 x COR_B1), MUL_B2_
COR_B2 (B2 x COR_B2), MUL_B3_COR_B3 (B3 x COR_B3), MUL_B4_COR_B4 (B4 x COR_B4)

MUL_Bx_ENE_Bx SPOT-6 Texture index 4 Product of band reflectance and band energy: MUL_B1_ENE_B1 (B1 x ENE_B1), MUL_B2_ENE_B2 
(B2 x ENE_B2), MUL_B3_ENE_B3 (B3 x ENE_B3), MUL_B4_ENE_B4 (B4 x ENE_B4)

MUL_Bx_HOM_Bx SPOT-6 Texture index 4 Product of band reflectance and the band homogeneity: MUL_B1_HOM_B1 (B1 x HOM_B1), 
MUL_B2_HOM_B2 (B2 x HOM_B2), MUL_B3_HOM_B3 (B3 x HOM_B3), MUL_B4_HOM_B4 (B4 x 
HOM_B4)

RAT_Bx_CON_Bx SPOT-6 Texture index 4 Ratio of band reflectance and band contrast: RAT_B1_CON_B1 (B1/CON_B1), RAT_B2_CON_B2 
(B2/CON_B2), RAT_B3_CON_B3 (B3/CON_B3), RAT_B4_CON_B4 (B4/CON_B4)

RAT_Bx_COR_Bx SPOT-6 Texture index 4 Ratio of band reflectance and band correlation: RAT_B1_COR_B1 (B1/COR_B1), RAT_B1_COR_B1 
(B2/COR_B2), RAT_B3_COR_B3 (B3/COR_B3), RAT_B4_COR_B4 (B4/COR_B4)

RAT_Bx_ENE_Bx SPOT-6 Texture index 4 Ratio of band reflectance and band energy: RAT_B1_ENE_B1 (B1/ENE_B1), RAT_B2_ENE_B2 (B2/
ENE_B2),RAT_B3_ENE_B3 (B3/ENE_B3), RAT_B4_ENE_B4 (B4/ENE_B4)

RAT_Bx_HOM_Bx SPOT-6 Texture index 4 Ratio of band reflectance and band homogeneity: RAT_B1_HOM_B1 (B1/HOM_B1), RAT_B2_
HOM_B2(B2/HOM_B2), RAT_B3_HOM_B3 (B3/HOM_B3), RAT_B4_HOM_B4 (B4/HOM_B4)

INT_0_DS Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to the last satellite collection date (17/08/2018)

INT_0_DM Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to inventory measurement date

INT_0_1 Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to 1-year-old

INT_0_2 Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to 2-year-old

INT_0_MIN Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to minimum NDVI (minimum NDVI after 2-year-old)

INT_0_MAX Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from planting date to maximum NDVI

MAX_MIN Landsat 5, 7 e 8 Time series 1 Difference (INT_0_MAX—INT_0_MIN)

INT_1_DS Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 1 year after planting to the last satellite collection date (17/08/2018)

INT_1_DM Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 1 year after planting to the inventory measurement date

INT_1_MIN Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 1 year after planting to the minimum NDVI (minimum NDVI after 2-year-
old)

INT_1_MAX Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 1 year after planting to the maximum NDVI

INT_2_DS Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 2 years after planting to the satellite collection date (17/08/2018)

INT_2_DM Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 2 years after planting to the inventory measurement date

INT_2_MIN Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 2 years after planting to the minimum NDVI (minimum NDVI after 2-year-
old)

INT_2_MAX Landsat 5, 7 e 8 Time series 1 Cumulative NDVI from 2 years after planting to the maximum NDVI

NDVI_ 2_MIN Landsat 5, 7 e 8 Time series 1 Minimum NDVI value after 2-year-old

NDVI_ 2_MAX Landsat 5, 7 e 8 Time series 1 Maximum NDVI value after 2-year-old

MAX_MIN_NDVI Landsat 5, 7 e 8 Time series 1 Difference (NDVI_2_MAX—NDVI _2_MIN)
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computed to compare the final models. Statistical analyses 
were conducted using R and the following packages: ‘leaps’, 
‘gstat’, ‘spls’, ‘pastecs’, ‘spikeslab’, ‘caret’, and ‘measures’.

2.4  Kriging with External Drift (KED) geostatistical model
Kriging with External Drift predicts the variable Z at an 
unsampled point s by combining a deterministic func-
tion μ(s) which indicates the underlying drift, and a 
stochastic residual component ε(s) (Goovaerts 1997; 
Wackernagel 2003).

In KED, μ(s) is modeled by a function of auxiliary 
variables:

where al are coefficients to be estimated from the data, 
fl is the function of auxiliary variables describing the 
drift ( f0 is the constant function with value of 1), X(s) is 
the vector of auxiliary variables at location s, and L + 1 is 
the number of functions used in modelling the drift.

Given n observed values, (s1),…,Z(sn), at sample points, 
s1,s2,…,sn, we predict Z*(s0) at an unsampled location s0 as:

where ωi is the kriging weight assigned to Z(si). These 
weights are computed by minimizing the estimation 
error variance subject to the unbiased constraint. This is 
solved using the Lagrange multiplier method, leading to 
the KED system of equations:

where C(h) is the covariance function of the variable Z 
in function of the distance h linking any two points s and 
s + h. In Eq. 4, h is written as the difference between two 
points, e.g., (si − sj) (Goovaerts 1997; Wackernagel 2003). 
λl is a Lagrange multiplier. In the present study, we use 
the external drift variables X(s) that were selected from 
Table 2 (see section “2.4”).

The covariance function C(h) was obtained from the 
experimental variogram by fitting a variogram model. The 
variogram model is a smooth function that is fitted on the 
experimental variogram obtained from the data. Most 
variogram models are characterized by three parameters: 

(1)Z(s) = µ(s)+ ε(s)

(2)µ(s) =
L

l=0
alfl(X(s))

(3)Z∗(s0) =
∑n

i=1
ωiZ(si)

(4)
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j=1ωj = 1,
�n

j=1ωj fl(X(si)) = fl(X(s0)), for l = 0,1, . . . , L

the "nugget", reflecting measurement error and unre-
solved spatial variability; the "sill", representing the spatial 
variation of the data explained by the variogram model; 
and the "range", denoting the distance over which the 
samples exhibit spatial correlation. We tested common 
variogram functions including exponential (Exp), spheri-
cal (Sph), Martén (Mat), Gaussian (Gau) and Martén M. 
Stein’s parameterized (Ste) (mathematical formulations in 
Stein 1999). The five models tested were fitted to the data 
using Levenberg–Marquardt fitting with a weighted least 
square method, and we selected the one with minimum 
RMSE value. Spatial predictions of stem volume were 
then made across the entire area at pixel scale by first 
solving the Eq. 4 for ω and � through linear algebra. The 
’gstat’ R package was used for these computations.

2.5  Generalized additive model (GAM) with spatial 
coordinates

Local predictions were performed using GAM with spa-
tial coordinates. The spatial relationship is represented by 
the coordinate smoothing function, and non-stationary 
effects are modeled by interactions between the smooth-
ing function and the auxiliary variables (Nussbaum et al. 
2018). The estimate of the local mean stem volume µ̂s at 
location s follows the equation:

where µ0 is the model intercept, X1
s ,…,Xk

s  are local auxil-
iary variables selected previously (see “2.4”), β1, . . . ,βk are 
the parameters to be estimated, f is a bivariate smoothing 
function relating the covariates xs (longitude) and ys (lati-
tude) to the response variable, g is an increasing monotonic 
link function (identity in our case), and ε is the identically 
distributed random error. We used the ‘gam’ function of the 
R package ‘mgcv’, where the smoothing function f is a penal-
ized regression spline, and where the smoothness criteria of 
this function is internally optimized using the Generalized 
Cross Validation (GCV) criterion (Wood 2017). Note that 
we did not use co-kriging of the residuals in this approach, 
as spatial location is incorporated in the model through the 
local smoothing term. Therefore, while our GAM approach 
may not be considered as a geostatistical technique strictly 
speaking, it explicitly includes location in the predictions, 
representing landscape features not captured by other auxil-
iary variables in the model.

2.6  Analysis of the stem volume predictions generated 
by the models

To assess the predictive performance of the linear model, 
KED and GAM, fivefold cross-validation was used. The 
statistics used to assess the predictive capacity of the 

(5)
g
(

µ̂s

)

= µ0 + β1X
1
s + · · · + βkX

k
s + f

(

xs, ys
)

+ ε



Page 7 of 16Aló et al. Annals of Forest Science           (2024) 81:43  

models were the same as those applied in the method 
of variable selection, i.e., the Root Mean Square Error 
(RMSE) and the Adjusted Coefficient of Determination 
 (R2adj). For the KED model and GAM, we also computed 
the part of the variance explained by the auxiliary variables 
and the variance explained by the spatial features of the 
model.

3  Results
3.1  Landsat reflectance, vegetation indices, NDVI time 

series, and texture indices
Pixel-scale interpolated and smoothed Landsat NDVI 
time-series were obtained. Figure 1 presents an example 
of a single pixel that underwent conversion from a pas-
ture to a eucalypt plantation in February 2014 and was 
4.5  years old at the time of inventory in August 2018. 
The time-series clearly illustrates the transition from 
low NDVI values in the pasture stage to high and stable 
NDVI values in the eucalypt stage. Seasonal variation is 
evident during the eucalypt stage, resulting from the con-
trast between rainy and drought seasons (Fig. 1).

The dataset, described in Table 1, was analyzed using the 
Spearman correlation method. A correlation matrix was 
generated (Fig.  4 in Appendix) to identify high correla-
tions, both positive and negative, between spectral bands, 
vegetation indices, texture, NDVI time series integrals, and 
stand age. This highlights the need for a variable selection 
technique to prevent multicollinearity in subsequent lin-
ear models. A Spearman correlation was also conducted 
between stem volume and each variable in Table  1. The 
results showed that most variables were significantly cor-
related with stem volume, either positively or negatively. 
However, there was large variability in the correlation 
coefficients (Fig.  5 in Appendix). Significant relationships 
were found between stem volume and tree age (correlation 

coefficient of 0.83), some NDVI integrals of Landsat 
images (INT_0_DM, INT_0_DS and INT_1_DM) with 
values ranging between 0.86 and 0.89, and SPOT direct 
spectral bands B1, B2, and B3 with negative relationships 
of − 0.74 to − 0.77. However, some vegetation indices, such 
as the Landsat minimum and maximum NDVI values after 
2 years, were not significantly correlated with stem volume.

3.2  Selection of variables
To minimize the impact of multicollinearity in linear 
regression models, we applied variable selection through 
different algorithms listed in Section “2.4”. Each final 
model contained between 3 and 7 variables (Table 3).

The models used variables computed from NDVI time 
series integrals. However, variables such as AGE and B1 to 
B3 reflectances, which showed high correlation with stem 
volume (Fig. 5 in Appendix), were not included. Instead, 
ratios between bands were found in nearly all models, 
with RAT_B3_B2 (which had a direct correlation coeffi-
cient of 0.52 with stem volume) being present in half of 
the tested models. None of the models selected the NDVI, 
SAVI, and ARVI vegetation indices. The models included 
two texture indices: MUL_B1_HOM_B1 (which had a 
direct correlation of -0.47 with wood volume) in mod_spls 
and RAT_B2_CON_B2 (which had a correlation coef-
ficient of 0.19) in mod_en. The best model was obtained 
using the Lasso regression method mod_ls, with a RMSE 
of 14.03  m3  ha−1, an  R2 of 0.94 and an AIC of 1399.54 in 
the calibration data. This model was also the best in the 
validation dataset, with an RMSE of12.44  m3  ha−1 and an 
 R2 of 0.95. The mod_ls used three simple ratio variables 
and three NDVI integrals variables (Table  4). The vari-
ables INT_0_DM was found to be highly significant in the 
model and was also correlated with AGE (Fig. 4 in Appen-
dix). These variables highlight the importance of spectral 
information, age, and NDVI fluctuations during the stand 
growth. The regression and the dispersion of the residuals 
of the validation data for this model are shown in Fig. 2.

3.3  Analysis of stem volume prediction generated by KED 
and GAM

The variables selected with mod_ls were implemented as 
external drift in the KED algorithm. The spatial depend-
ence structure was obtained from the residuals vari-
ogram. The best fit of the variogram was with Martén 
M. Stein’s model (Ste) after testing the RMSE of the vari-
ogram fit with different model types. The range value was 
2750 m, the nugget was 92.5  m3.ha−1, and the sill was 179 
 m3.ha−1. After calibration, the KED was applied to the 
independent validation dataset, resulting in an  R2 of 0.96 
and an RMSE of 10.62  m3.ha−1. The auxiliary variables 

Fig. 1 Pixel-scale NDVI measured by 3 Landsat sensors (blue: Landsat 
TM 5; Red: Landsat 7 ETM + ; Green: Landsat 8 OLI) after pre-treatments 
described in the main text. The area was a pasture and was planted 
with Eucalyptus in February 2014 (dashed gray line). The black line 
shows the cubic spline smoothing curve
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explained approximately 94% of the variance, while the 
spatial correlation term explained 5%.

The GAM model was also applied to the validation 
dataset and produced similar results to the KED, with an 
 R2 of 0.96 and an RMSE of 10.56  m3.ha−1. In this case, the 

auxiliary variables accounted for approximately 98% of 
the variance, while the spatial correlation term accounted 
for only 1.2%. The coefficients were similar to those in the 
linear model mod_ls, with only a slight impact on the sig-
nificance of some variables (Table 4).

3.4  Application of the linear, KED, and GAM models
The Linear, KED, and GAM models used the same set of 
six variables derived from SPOT-6 and Landsat 5, 7, and 8 
images. The KED and GAM models, which incorporated the 
spatial structure of the data, provided the most accurate pre-
dictions in the independent dataset (Fig. 2). The stem volume 
map was produced by applying the models at a pixel-scale 
resolution of 7.5 m. This process is illustrated for GAM in a 
small area in Fig. 3, and a comparison with the linear model 
and KED is shown in Fig. 6 in Appendix. These comparisons 
reveal only minor visual differences between the models. 
Figure 3 shows significant changes in stem volume between 

Table 3 Statistics of the multilinear models for stem volume prediction  (m3  ha−1) obtained from different variable selection methods 
(see Section “2.4”)

Statistics are given in the table for the calibration dataset and the validation dataset (20% of the data). In bold the model which gave the best statistics. mod_fw: 
forward stepwise selection, mod_bw: backward stepwise selection, mod_sw: sequential replacement, mod_spls: sparse partial least squares, mod_sl: Spike and Slab 
Lasso; mod_rd: Ridge; mod_ls: Lasso; mod_en: Elastic Net

Calibration Validation

Method Selected 
auxiliary 
variables

RMSE R2
adj AICc RMSE R2

mod_fw INT_2_DS, INT_2_
MAX, NDVI_2_MIN

20.5 0.88 1519.39 19.1 0.88

mod_bw RAT_B3_B1, 
INT_0_MIN, 
NDVI_2_MIN

31.6 0.72 1666.57 27.3 0.74

mod_sw MAX_MIN, INT_2_
DS, NDVI_2_MIN

21.2 0.87 1531.46 18.5 0.88

mod_spls MUL_B1_HOM_B1, 
INT_0_DS, 
INT_1_MAX, 
NDVI_2_MAX

18.5 0.90 1487.06 18.1 0.89

mod_sl RAT_B2_B1, RAT_
B3_B2, RAT_B3_B4, 
MAX_MIN_NDVI, 
INT_2_MIN

30.2 0.74 1656.22 26.3 0.76

mod_rd RAT_B3_B2, RAT_
B4_B3, INT_2_MIN, 
MAX_MIN_NDVI

30.5 0.74 1657.00 26.2 0.76

mod_ls RAT_B1_B2, 
RAT_B2_B4, RAT_
B3_B2, INT_0_DM, 
INT_0_2, INT_2_
MAX

14.0 0.94 1399.54 12.44 0.95

mod_en RAT_B1_B2, RAT_
B2_B4, RAT_B3_B2, 
RAT_B2_CON_B2, 
INT_0_2, INT_1_
DM, INT_2_MAX

14.2 0.94 1401.06 14.6 0.93

Table 4 Coefficients and significance levels for variables of the 
linear model mod_ls and the GAM model 

Significance levels:.p < 0.1, * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001

Linear model mod_ls GAM

Intercept  − 360.4***  − 379.8***

RAT_B1_B2 236.8*** 255.5***

RAT_B2_B4  − 177.5*  − 204.1**

RAT_B3_B2 124.2*** 141.3***

INT_0_DM 0.2246*** 0.2258***

INT_0_2 0.1327* 0.117*

INT_2_MAX  − 0.0067  − 0.0059
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stands, primarily due to differences in management (such as 
age), as well as within-stand variations.

4  Discussion
4.1  Optimal variable selection for predicting wood volume 

in linear models
The vegetation indices had a positive and moderate corre-
lation with stem volume, which is consistent with Dos Reis 
et al. (2018). NDVI and SAVI, in particular, showed corre-
lation coefficients of R = 0.49 and R = 0.47, respectively. It is 
important to note that these indices are primarily associated 
with the green leaf surface within a pixel. During the initial 
months of the plantation, when the canopy has not yet fully 
developed, the green leaf surface may be correlated with 
wood biomass or volume. However, the correlation between 
NDVI and canopy tends to decrease over time. This is due to 

the saturation of NDVI at high values as the canopy matures 
and closes. This phenomenon has been observed in various 
plantations after canopy closure (Le Maire et al. 2011a, b, c; 
Avitabile et al. 2012; Souza et al. 2019). After canopy closure, 
wood volume continues to increase while leaf area stabilizes 
or even decreases (le Maire et al. 2019). This is observed in 
the NDVI time series example shown in Fig. 1.

Texture measurements have been explored as an alter-
native to vegetation indices for improved discrimination 
in forest structure (Sarker and Nichol 2011; Dube and 
Mutanga 2015). However, in the present study, they only 
showed a moderate correlation with the stem volume. The 
final models included a combination of texture indices 
and reflectance bands (Table 3), but not in the best model, 
mod_ls. Castillo-Santiago et  al. (2013) found moderate 
correlations between texture and biomass, which varied 

Fig. 2 Dispersion and residual graphs between the predicted and measured stem volume values (left) and Residual Plot (right), obtained 
on the validation dataset for the Linear, KED, and GAM models, after the mod_ls variable selection method (See Table 3). The regression line 
with a 95% confidence interval, the RMSE (m3.ha−1), and R-squared are displayed in the left graph
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depending on the spectral region. However, Lu (2006) study 
showed that texture alone may not be sufficient to establish 
relationships with wood volume estimates. This is primarily 
because these relationships tend to be site-specific.

In the context of short-rotation planted forests, it is pos-
sible to analyze the stand’s history using time-series data 
that extends from the planting date. The variables derived 
from the Landsat time-series data included the minimum 
and maximum NDVI values within stand age intervals, or 
the integration of NDVI over these age intervals. Stand age 
was included as a distinct variable, obtained directly from 
the stand manager rather than from remote-sensing. Inter-
estingly, the planting date itself can be obtained from the 
time-series data (Le Maire et  al., 2014). Stand age had a 
high correlation with stem volume (R = 0.83), but was not 
included in the variable selection process due to its sub-
stantial correlation with the integral NDVI variables.

Marsden et  al. (2010a, b) and Le Maire et  al. (2011a, 
b, c) used NDVI time-series data derived from MODIS 
satellite imagery (at a 250-m pixel resolution) to calculate 
NDVI integrals at the stand level, spanning from plant-
ing date to inventory date. They found a strong correla-
tion with stand-scale biomass. This study confirmed the 
direct correlation, with a R value of 0.89 between volume 
and INT_O_DM. The correlation between MODIS data 
integrals and volume estimates was initially established 
at the stand scale. However, it remained high at the local 
scale, even with the spatial resolution of Landsat reduced 
to 30 m and volume estimates based on local inventory 
plots of 500  m2. Despite the less frequent data acquisi-
tion frequency of Landsat in comparison to MODIS, the 
strength of this relationship was not diminished.

4.2  KED and GAM geostatistical models for stem volume 
mapping

The spatial prediction of the stem volume was slightly 
improved with KED or GAM, compared to the linear 

model alone. This suggested the presence of spatial pat-
terns within the data that were not adequately accounted 
for by the remotely sensed data alone. The proportion 
of variance explained by auxiliary variables was high 
(94%) compared to that explained by spatial correlation 
for both KED and GAM. This is consistent with the rela-
tively minor improvement compared to the linear model. 
Although KED slightly outperformed GAM in capturing 
spatial variations, it is worth noting that the KED method 
required more computational resources and the selection 
of a variogram model. Therefore, we chose to use GAM 
to produce the final stem volume map, as shown in Fig. 3.

Previous studies have shown that KED is effective in 
improving volume predictions and spatial representa-
tions. For example, Lochhead et al. (2018) found that KED 
was the most accurate method for predicting various for-
est attributes in Canada’s boreal forest among the tested 
nonlinear models. Viana et  al. (2012) found limited util-
ity of kriging in Pinus stands due to low data spatial cor-
relation. However, they emphasized its potential in forests 
with more sampling units, higher spatial continuity, and 
by testing diverse auxiliary variables. Other studies have 
highlighted the advantages of the GAM spatial model 
in volume or biomass predictions. Alberdi et  al. (2020) 
found that GAM could explain a greater variability in the 
data and outperformed other methods in estimating wood 
stock, especially in areas lacking wood stock informa-
tion. Maack et al. (2016) showed that GAM has potential 
for large-scale wood volume interpolations by combining 
inventory data, outperforming models like Random Forest 
in this context.

The study assessed model uncertainties by testing on 
an independent subset of data. However, further work 
is required to improve the analysis of the uncertainty 
associated with model predictions, and its propagation 
across scales. Estimating uncertainty is complex, particu-
larly when several models are combined in a hierarchical 
manner (Saarela et  al. 2016), such as a model to predict 

Fig. 3 Example of a map of distribution of the estimated volume  (m3  ha−1) obtained from the GAM model, predicted for August 2018. No data 
values in white corresponds to other land use around the stand, or to gaps within the stand previously masked
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individual tree volume (including uncertainty on the tree 
measurements), a model to predict plot scale volume 
(including uncertainty from the inventory measurements), 
and a model to interpolate spatially the plot-scale volume 
(including uncertainty from the auxiliary data). Saarela 
et al. (2020) proposed a hierarchical model-based approach 
that considers multiple sources of uncertainty at two differ-
ent scales: the tree-level biomass model and models linking 
the plot-level biomass to auxiliary variables (in their case 
coming from LiDAR). This approach allowed for the attri-
bution of the uncertainty to the different models, and the 
generation of uncertainty maps and uncertainty estimates 
for regional averages. A similar approach could be used to 
test the hypothesis that model uncertainty in tree-level and 
plot-level volume predictions only marginally contributes 
to the final uncertainty on these clonal plantations.

4.3  Model genericity and future directions for improving 
high‑resolution mapping of forest volume

The models were created for eucalypt plantations in a 
specific pedoclimatic context. The spatial models devel-
oped inherently rely on local calibration with inventory 
data, but the method can be applied to other regions and 
other plantations. The linear model used to link stem vol-
ume to satellite-derived features in the spatial models is 
specifically designed for short-rotation plantations with 
dynamic growth. The most important variables are linked 
to NDVI integrals since planting date. Our study found a 
robust correlation, resulting in a low RMSE of 12.44  m3/
ha. Marsden et al. (2010a, b) obtained an RMSE of 24  m3/
ha for Eucalyptus plantations, which was almost double 
of our result. This difference may be due to greater stand 
variability across a larger area, encompassing diverse 
pedoclimatic conditions and growth histories. It is worth 
noting that our linear model’s additional features may 
have improved the predictions compared to their model. 
Stand age alone could replace NDVI integrals, as dis-
cussed before (Dube et  al. 2015; Dos Reis et  al. 2019). 
However, this solution reduced the model accuracy, as 
shown in the present study, and the intra-stand spatial 
variability of volume relies therefore only on other spatial 
features of the models (spectral reflectance ratios, etc.). 
The locally developed approach in our study likely applies 
to various eucalypt growth conditions in Brazil, with 
precision subject to local variations. Further exploration 
is necessary to confirm its applicability in different loca-
tions, especially in stands that have experienced damages 
resulting in local volume heterogeneity.

To improve the precision of high-resolution forest vol-
ume mapping, several strategies, and further research 
may be considered: (i) Incorporating additional informa-
tion on the stand, such as planting density, management, 

genotype composition, or environmental variables (e.g. 
Stape and Alcarde Alvares 2023) to improve volume 
prediction in the linear model. This can provide more 
accurate volume prediction combined with the variables 
coming from satellite images; (ii) Leveraging other types 
of remote sensing data, such as higher-resolution Senti-
nel 2 NDVI data (10 m), and radar and lidar, to enhance 
the volume prediction. These data sources provide differ-
ent information on the forest stand structure and com-
plement the optical satellite data; (iii) Adding more plots 
in diverse locations to improve and validate the volume 
maps.

The method developed in this study has various appli-
cations, primarily improving stand volume precision by 
addressing intra-stand variability that may not be cap-
tured by measurements of only a few inventory plots. 
This method is cost-efficient and scalable to cover thou-
sands of hectares, in contrast to more precise but expen-
sive and local methods based on Lidar acquisition, for 
instance. The prediction of stem volume, which can be 
obtained for instance at the first inventory around 2 years 
of age, can guide the selection of a few additional tem-
porary plots. The method of complementing permanent 
plots with temporary plots based on satellite analysis 
was found to be efficient for the National Forest Inven-
tory (Räty and Kangas 2019). In rapidly expanding plan-
tations, this can ensure that inventory plots are more 
representative of the entire study area. This improves the 
volume prediction accuracy across different stand ages, 
particularly at the pre-harvest inventory date.

5  Conclusion
The study proposed a novel approach that combined spec-
tral, textural, and temporal features extracted from both 
SPOT-6 and Landsat 5, 7, and 8 satellite images, along with 
spatial models and forest inventory data, to map the stem 
volume of fast-growing plantations. Out of the 86 remotely 
sensed variables, only six were selected in a linear model 
calibrated with the Lasso algorithm. These key variables 
include integrals of NDVI time-series from planting date 
to measurement date or to 2 years of age, integral between 
2 years of age and the date of maximum NDVI, and spec-
tral reflectance ratios between bands 1 and 2, 2 and 4, and 
3 and 2. The linear model alone yielded precise results, with 
 R2 of ~ 0.95 and RMSE of ~ 12.44. The same variables were 
used as auxiliary variables in KED and GAM models. They 
provided slight improvements in prediction accuracy, with 
 R2 of ~ 0.96 and RMSE of ~ 10.6  m3.ha−1, and captured finer 
spatial details, enhancing the robustness and precision of 
the model’s results. These spatial models were applied in the 
forest area, distinguishing regions with different stand ages 
and estimating the within-stand variability of wood volume.
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Appendix

Fig. 4 Spearman correlation matrix for 62 of the 86 variables listed in Table 2, derived from 211 forest inventories of Eucalyptus stands across various age 
classes. To enhance interpretability, the matrix displays the absolute values of the correlations. Texture variables from B1 and B2, which showed strong 
correlations with those from B3, were excluded. The variables are arranged in order to place those with high correlations adjacent to each other.



Page 13 of 16Aló et al. Annals of Forest Science           (2024) 81:43  

Fig. 5 Spearman correlation between each of the 86 variables listed in Table 2 and the stem volume. Significant correlation are in red, with plus symbols 
for positive correlation (p<0.05) and dots for negative correlations. Variables are ordered by type of variables, as in Table 2.
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Fig. 6 Example of a map of distribution of the estimated volume (m³ ha-1) obtained from the linear and KED models (see Fig. 3 for GAM), predicted 
for August 2018.  No data values in white corresponds to other land use around the stand, or to gaps within the stand previously masked.
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