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Abstract

Key message: Managing forest residues according to the carbon content of the soil helps to minimize the
ecological footprint of their removal.

Context: In Mediterranean mountain ecosystems, unsustainable harvesting of wood residues might contribute to
land degradation, carbon, and nutrient depletion in forest soils.

Aims: This study aimed to assess the amount of forest biomass residues that should be left on-site to minimize the
depletion of soil fertility.

Methods: We estimated the availability of biomass residues in the public forest land of the Basilicata region of
Southern lItaly by collecting stand-scale inventory attributes from forest management plans. Subsequently, we
quantified the amount of forest biomass residue released by implementing a scenario-based approach.

Results: Approximately 5800 m?year™' of forest residues could be potentially available for bio-based industries at the
regional scale within the next 10 years. Such residues mainly belong to broadleaved forest types, having a high
variability in their soil organic stock (228.5-705.8 Mg C ha™") and altitudinally spanning from 400 to 1500 m as.. In
these forests, the simulated scenarios displayed a wide range of average harvestable residues from 2.5 to 5.5 m” ha™',
containing approximately 1.1 to 2.1 Mg ha™' of organic carbon.

Conclusion: Our study suggests that forest management plans are a useful source of information to estimate the
available forest biomass residues consistently. In southern Mediterranean mountain forests, the management of forest
residues according to soil carbon content helps to minimize the environmental impact and increase their sustainability.
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1 Introduction

Biomass resources have attracted policy attention as one
of the essential components in both bio-based industry
and the energy consumption mix diversification of Euro-
pean countries (Ferranti 2014; European Commission
2017; Sikkema et al. 2021). For the transition towards a
sustainable climate-neutral economy, there have been in-
creasing efforts and incentives over the last decade in
utilizing woody biomass in the circular bio-economy as
a sustainable feedstock for bio-based industries and
bioenergy as a replacement for conventional fossil-based
materials (Scarlat et al. 2015; European Parliament
2021). Both products and energy obtained from woody
biomass have the potential to mitigate significant envir-
onmental impacts. However, when used for bioenergy
purposes, their combustion needs to be compensated by
the capture and storage of carbon (C) to be sustainable.

Additionally, the reuse of agricultural and forest resi-
dues, that would otherwise be underutilized, has the po-
tential to create jobs and income, especially in rural
areas, and to provide local and sustainable feedstock en-
ergy for communities by decreasing their dependency on
the international fuel market (Hall 2002; Ahtikoski et al.
2008; Saidur et al. 2011; Shabani et al. 2013; Viccaro
et al. 2019).

Although woody biomass is generally considered a re-
newable bioresource alternative to both fossil-based
products and fuels, the current debate on biomass
utilization critically evaluates its C neutrality and sus-
tainability (Mather-Gratton et al. 2021). For instance,
the lack of concentrated biomass resources and limited
accessibility to mountain forests have hindered biomass
supply chains. Biomass resources are usually spread over
large and fragmented forest areas, agricultural activities,
or dedicated coppice plantations (Verkerk et al. 2019;
Viccaro et al. 2019; Saulino et al. 2019). Additionally,
unfavorable climatic conditions, combined with the high
biomass transportation costs, which account for up to
50% of the total delivery cost, and risks related to wood
market instability and stochastic natural disturbances in-
crease the uncertainty of forest biomass supply chains
(Hall 2002; Flisberg et al. 2012; Shabani et al. 2013). Fur-
thermore, the sustainability of bioenergy production
from forests needs to be considered (Aguilar 2014;
Leban et al. 2016), given that the production and use of
wood to generate bio-based goods and energy has sub-
stantial environmental implications (Rafael et al. 2015;
Erb et al. 2018). Currently, there is a highly debated
trade-off between using forest biomass residues as bio-
products to mitigate the environmental impact of fossil-
based products and their on-site release to sustain and
conserve the productivity and fertility of forest stands
(Achat et al. 2015; Titus et al. 2021). This becomes rele-
vant in Mediterranean forest ecosystems that are
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markedly vulnerable to soil degradation and soil organic
carbon (SOC) fertilization, often associated with erosive
processes (Lavee et al. 1998; Muioz-Rojas et al. 2016),
due to extensive land-use changes over time (Anaya-
Romero et al. 2011; Francaviglia et al. 2017).

In forest ecosystems, the constant addition of decaying
tree residues might represent the primary source of SOC
and nutrients to the soil (Conforti et al. 2016), which are
utilized by trees for their regeneration and establishment
processes (Harmon et al. 1986; Motta et al. 2006). Con-
versely, the increasing removal of forest residues reduces
the pool of C stored in dead organic matter and litter in-
put to soil (Johnson and Curtis 2001; Eriksson et al.
2007; Vanhala et al. 2013), significantly decreasing the C
and nutrient levels in forest soil. Against this degrad-
ation factor, the in situ release of biomass residues could
provide a range of environmental benefits by simultan-
eously increasing the structure and species diversity of
forest stands, microbiological and physiochemical prop-
erties, soil fertility, nutrient availability, and water reten-
tion in forest soil (Ali 2019; Manolis et al. 2019;
Bonanomi et al. 2021). Research studies indicating the
releasable amount of forest residues are mainly con-
ducted in northern latitude forest ecosystems, in which
species composition and soil properties are markedly dif-
ferent from those in Mediterranean environments. In
Swedish forests, the suggested amount of wood ash to
be added as a soil supplement to compensate for the loss
of nutrients varies between 0.8 and 2.2 ton ha™* per ro-
tation period, depending on the region and local condi-
tions (Borjesson 2000). For example, Norway spruce
stands were reported to release approximately 15.0 kg
dw ha™! as the amount of fine fraction residues left on
site post-harvest (Olsson et al. 1996; Wang et al. 2010).
The southern USA considered that leaving 30% of log-
ging residues on harvest sites is more than sufficient to
meet the nutrient requirements (Perez-Verdin et al.
2009; Pokharel et al. 2017). However, according to the
different US guidelines, the suggested proportion of resi-
dues left on the ground ranges from 10 to 33% of the
harvestable biomass (Fletcher et al. 2011). Nevertheless,
limited studies have evaluated the optimal amount of
biomass residues that should be left on the soil to com-
pensate for the removal of organic matter and essential
macro-and micro-nutrients (Perez-Verdin et al. 2009),
especially in the Mediterranean mountain environments.
Releasing forest biomass residues on site in degraded
Mediterranean forest ecosystems might enhance their
productivity, soil stability, and vegetation recovery
(Hueso-Gonzdlez et al. 2018).

Currently, forest biomass residues, such as logging res-
idues, non-merchantable timber, and roundwood, are al-
ternatively left or burnt on site, given that their
collection is not economically viable for forest



Pergola et al. Annals of Forest Science (2022) 79:14

enterprises (Hueso-Gonzilez et al. 2018; Vance et al
2018). Currently, forestry residues are considered a suit-
able renewable bioresource alternative to fossil-based
bioproducts (Perea-Moreno et al. 2017; Briones-Hidrovo
et al. 2021) and potentially contribute to the ecological
transition of the European Union (COM 2020). Euro-
pean countries have long treated the development of re-
newable sources as a priority in their energy policy and
the promotion of energy efficiency (COM 2021). In light
of the current COVID-19 pandemic, European countries
have prioritized the transition towards sustainability
(Kohler et al. 2019) by activating a series of extraordin-
ary measures and financial resources to cope with the
economic crisis triggered by the spread of the virus. On
a national scale, the transition to bio-economy has reo-
pened the attention on forests as a feedstock source for
bio-based industries and bioenergy. However, the overall
debate over sustainability transitions needs to consider
both places and bio-resource types where transitions
occur, which represent relevant factors in minimizing
the ecological footprint of the bio-based economy sector.

Within this framework, this study aimed to explore
the sustainability of biomass residue management fol-
lowing a set of on-site release scenarios of forest biomass
residues in the public forest lands of the Basilicata re-
gion (Southern Italy). This is to supply regional and local
administrations with quantitative information that could
help support and promote the industry sector powered
by biomass, preserving the functioning of forest ecosys-
tems with priority.

2 Materials and methods

2.1 Study site

Forests cover approximately 35% (356,426 ha) of the
overall administrative territory of the Basilicata region
(Fig. 1). Such forest surfaces are spatially fragmented
and distributed within a broad altitude range, from ap-
proximately 300 to 1700 ma.s.l. Less than 50% of these
surfaces are public property and are owned and man-
aged by land administration agencies (i.e., municipalities,
national, and provincial park institutions). At the same
time, the remaining forests are private properties owned
by citizens or families rather than private companies.
The size of forest surfaces varies according to property
ownership, with public forests consistently over 50 ha. In
these forests, the dominant vegetation categories are
represented by broadleaved forests, with an evident
prevalence of Mediterranean deciduous oaks covering
51.8% of the total forest area, followed by European
beech (8.4%), Mediterranean evergreen oaks (7.9%), ther-
mophilous shrublands (6.9%), other mesophilic and
mesothermophilic broad-leaved forest stands (5.5%), ri-
parian forests (3.9 %), chestnut forests (3.0%), and plan-
tation forests with exotic tree species (0.6%) (Costantini
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et al. 2006). Conifer forests cover the remaining 12% of
the forest area, of which subalpine and alpine conifers
represent 3% and Mediterranean pine forests cover 9%.

2.2 Collection of forest management plans and stand
attributes

For each municipality, we acquired the forest manage-
ment plans (FMP) in force for the public forest surface
under a management plan. The FMP represents a pivotal
document that provides forest resource inventory and
spatiotemporal and quantitative management informa-
tion at the forest parcel scale. The parcel serves as the
smallest management unit of forest stands in which both
ecological and silvicultural management criteria are im-
plemented. From each FMP, we extracted an array of
topographic and biometric attributes to quantitatively
characterize public forest surfaces. At the parcel scale,
the following inventory attributes were extracted: (i) sur-
face area of the forest parcels (ha); (ii) the mean annual
increment (m>ha™!); and (iii) the aboveground standing
volume (m®ha™'). Moreover, the forest parcel polygons
were used as spatial vector data. For each centroid of the
forest parcel, the altitude value (ma.s.l) was extracted
from the freely available digital elevation model (DEM)
at a resolution of 20 m (http://www.sinanet.
isprambiente.it/it/sia-ispra/download-mais/dem20/view).

2.3 Estimating the volume of forest residues

Commonly, the term “forest biomass residues” refers to
woody biomass generated directly by forest management
activities, such as logging residues, and by the wood pro-
cessing industry, such as shavings, sawdust, and wood-
chips. Although biomass residues are generated from
forest logging activities to the roundwood processing
plant, in this study, we considered exclusively the bio-
mass residues produced by on-site harvesting activities.
Therefore, in our study, the term forest residues refers
to the biomass residues directly resulting from the har-
vesting and processing activities of on-site logged trees.
Such residues are defined as the primary class of
forestry-derived biomass feedstock obtainable from for-
est harvesting, which is also indicated with the common
terms “slash” or “brash” (Titus et al. 2021) and more
specifically as fine wood debris (FWD; Camia et al.
2021).

Forest biomass residues mainly consist of upper stem
and branch fractions with a diameter lower than 5cm,
excluding the stump, roots, and leaf biomass (except for
conifers) of harvested trees. We quantified forest resi-
dues as a fraction of the harvestable aboveground stand-
ing volumes of each parcel of FMPs. Then, according to
the species-specific percentage values estimated by Cozzi
et al. (2013), for Basilicata forests, the volume of forest
residues was estimated as 9 to 20% of total forest
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Fig. 1 Spatial distribution of public forest surface cover (green polygons) under the management plan. Gray polygons indicated municipalities
with forest management plan (FMP) document in force. In white municipalities without forest surface or with expired FMP

utilization (i.e., harvested aboveground standing volume,
m?) of each parcel.

2.4 Estimating the carbon content of biomass residues

To assess the organic C fraction potentially left on site
for each forest parcel (x), the quantity of organic C con-
tent by forest residues (ROC, Mg ha™!) was calculated as
follow:

ROC, = AV,c

where, AV, represents the aboveground residue volume
(m*ha™) at parcel scale, and c is the conversion factor
from volume to weight of organic C (Mgm™). Since ¢
depends on the tree species, for oak woods, beech
woods, chestnut woods, hornbeam forests, other decidu-
ous forests, and conifers, the species-specific ¢ values
were retrieved from Gasparini et al. 2013.
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2.5 Estimation of soil organic carbon stock (SOCS)

The SOC stock (Mg C ha!) was calculated from the
SOC content, bulk density, and coarse fragments at six
depth intervals (0-5cm, 5-15 cm, 15-30 cm, 30-60 cm,
60—100 cm, and 100-200 cm). Finally, the value of SOC
at each parcel scale was obtained by summation of the
organic contents of all six soil depth intervals. The stock
of SOC data (OCSTHA in the SoilGrids database) was
obtained from the recently released International Soil
Reference and Information Center (ISRIC) (Hengl et al.
2017). The data available in a gridded format at a spatial
resolution of 250 m were downloaded from the server
ftp://ftp.soilgrids.org/data/recent.

2.6 Scenarios of in situ released biomass residues
To assess the potential availability of biomass residues
for the Basilicata region, different biomass-releasing sce-
narios were simulated by computing them on the total
available harvesting residues at the parcel scale (Fig. 2).
It was simulated from the release of 100% of the avail-
able forest residues as a baseline scenario. This scenario
synthesizes a set of socio-economic, technological, and
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environmental circumstances, which justify the retention
of the forest biomass residues at a logging site. There-
fore, such a baseline scenario includes leaving all forest
residues on site or processing them so that they are
mulched or distributed on site for forest sustainable
management goals, excluding any commercial and in-
dustrial use.

Three different scenarios were simulated by gradually
decreasing the release of forest biomass residues from
100% to 70%, 50%, and 30%. These decreasing release
scenarios consist of leaving a progressively lower quan-
tity of biomass residues on forest sites, excluding them
from commercial and industrial uses. These scenarios
reflect increasing interest in the large-scale utilization of
forest biomass residues for bio-based industry processes
by quantifying their potential availability at a regional
scale. Each scenario synthesizes a set of favorable socio-
economic, technological, and environmental circum-
stances, allowing the removal of biomass residues from
logging sites for commercial and industrial purposes.
Moreover, the 30% scenario release represents the mini-
mum benchmarking fraction of residues that should be

Baseline
scenario

Volume of
forest residues

. Released
. Removed

reciprocal percentage residues fractions (light green circles)

Fig. 2 Scenarios simulated in the release of forest biomass residues. Each scenario was simulated taking into account the decrease in volume of
forest residues released on the logging site. The baseline scenario corresponds to the release of 100% of the available forest residues. Decreasing
scenarios consist in releasing on-site 70%, 50%, and 30% (dark green circles) of the available biomass residues by removing the respective

N

Scenario
70:30

Scenario
50:50

Scenario
30:70
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left on site according to the guidelines for forest residue
release in northern European countries (Titus et al.
2021). Therefore, we used 30% as a conservative thresh-
old to minimize soil fertility loss in Mediterranean
mountain ecosystem forests.

2.7 Biomass residue sustainability ratio

For each simulated scenario, the sustainability of forest
residue removal was evaluated by means of the ratio be-
tween the ROC and the existing SOC contents as
follows:

ROC

RCIndex = ﬁ

where RCp,qex corresponds to the residue C index, and
ROC and SOC correspond to the C content of the forest
residues and soil, respectively. The range values of the
dimensionless RCphqex are > 0; when its value is close to
zero, the releases of forest residues on logging forest
floor are low or null, while it assumes increasing values
> 0 when the amount of forest residues on site increases.

2.8 Data analysis

To identify the group of forest parcels with similar
growth and productive attributes, an unsupervised K-
means clustering analysis was performed (Hartigan and
Wong 1979). The clusters of the forest parcel were parti-
tioned by site and stand attributes: altitude, SOC, mean
annual increment (MAI), and aboveground standing vol-
ume (ASV). The K-means algorithm allows identification
of the cluster of forest parcels characterized by high
intra-class similarity. The Euclidean distance method
was used to assign each forest parcel to the closest clus-
ter centroid. The optimal number of clusters was deter-
mined by the gap statistic (k) iterative method with 500
Monte Carlo bootstrapped samples, and by employing
the first SE max criteria (with SE factor of 1) to identify
the location of the maximum gap statistic value.

The contribution of each attribute to both dimensions
was determined by principal component analysis (PCA).
In the K-means partitioning clustering method, PCA is
used to reduce the dimensions of the data. Each variable
was considered significant when its percentage contribu-
tion exceeded the expected average contribution.

Management and analysis of the data were performed
in R (R Core Team 2020) by means of “cluster” (Maech-
ler et al. 2021), “FactoMineR” (Lé et al. 2008), and “fac-
toextra” (Kassambara and Mundt 2020) packages.

3 Results

3.1 Quantitative characteristics of public forest stands
Currently, in Basilicata, there are 66 FMPs, 31 (47%) of
which are expired and have not yet been renewed, and
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35 (53%) of which are still enforced or recently expired.
The forested surface area managed by FMPs accounts
for 7680 hectares (2.2% of the entire forested area) with
a total aboveground standing volume of 2.55 million m?,
This standing volume mainly belongs to the productive
high forests, although such volumes belong to coppice-
managed stands on some public forest surfaces. In 62%
of the municipalities, the forest parcels were managed
for productive purposes, whereas the remaining 38%
were alternatively managed for protective or recreational
purposes.

Within the time windows of 10 years from 2018 to
2027, the available and potentially harvestable above-
ground woody volume is 736,700 m?, whereas the overall
volume of logging residues accounts for 50,800 m>, cor-
responding to 5800 m®year and 0.66 m>ha™' year™
approximately.

3.2 Clustered forest parcels

Using the gap statistic iterative method, an optimal
number of seven clusters of forest parcels were identi-
fied, corresponding to a first maximum k statistic value
of 0.7 (+0.014) (Fig. 8 in the Appendix). Overall, the first
and second dimensions explain 82.7% of the variability
of the forest parcels stand, soil, and topographic charac-
teristics (Fig. 3). The first dimension (Dim1) accounted
for 60.4% of the forest parcels variability, more than
twice the second dimension (Dim2), which explains
22.3% of the variability.

Three of the four variables significantly participate in
both dimensions with a percentage contribution over the
expected value of 25% (Fig. 9 in the Appendix). The first
dimension significantly contributed to both SOC and
altitude variables, whereas the second dimension con-
tributed significantly to the MAIL Therefore, the identi-
fied forest parcels cluster horizontally placed along the
first dimension are significantly different in values of
SOC and altitude, whereas those vertically distributed
along the second dimension mainly differ in the MAI
values.

Average value of forest attributes consistently differed
among the cluster of public forest parcels (Fig. 4). At the
regional scale, the mean value of the MAI was 7.77 (+
3.67) m® ha™'. At the parcel cluster scale, the average
MALI exhibited a broad range of values, from a minimum
of 2.85m>ha™" to a maximum value of 1251 m®*ha™".
ASV exhibited an average value at regional scale equal
to 364.7 (£134.0) m® ha™!, with the high mean value of
526.5 (£99.7) observed for the parcels of cluster 2. Ap-
proximately 70% of the clusters of parcels showed a
mean value of SOC lower than average values of 357.5
(+164.6) Mg C ha™'. Additionally, the clusters with high
SOC are located at altitudes markedly above the 1000 m
as.l.
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3.3 Scenarios of forest residues release

The volume of the residues changed in line with the
clusters of the forest parcels (Fig. 5). In the baseline sce-
nario, available residues ranged from a minimum median
value of 3.3m>ha™! in cluster 1 to a maximum of 8.7

with the various scenarios (Fig. 5). In each cluster of par-
cels of the conservative scenario 30%, the minimum re-
leasable median values of forest residue volumes range
from 1.0m>ha™' of cluster 1 and 4 to 26m>ha™! of
cluster 2. Within these ranges, the variability of forest

m>ha™! in cluster 2. This range decreased proportionally  residues was high and not consistent with the SOC.

Cluster

1
LA B B B BELENLE BELANLAN BNLENLE BN B
15 0 200 400 600 0 150 300 450 600 0 500 1500
MAI(m*ha™') ASV(m®ha') SOC(MgCha') Altitude (m a.s.l.)

Fig. 4 The average value of the mean annual increment (MAI, m*® ha™"), aboveground standing volume (ASV, m* ha™"), soil organic content (SOC,
Mg ha™"), and altitude (m a.s.l) for each cluster of the public forest parcels. The colors of horizontal bars represent the K-means partitioning
clustering plots (see Fig. 3). Dotted gray vertical lines correspond to the mean values of each forest attribute. The horizontal solid black segments
represent the 1st standard deviations
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3.4 Harvestable forest residues and their carbon content
At the regional scale, average harvestable forest residue
volumes varied from a minimum of 2.45 (+0.71) m> ha™
in the scenario of 70% of on-site release to a maximum of
5.72 (+1.66) m> ha ' in the 30% release scenario (Fig. 6).
Consequently, the removable organic C of residues varied
proportionally to the scenario of the harvestable volumes
from 0.90 (+0.26) Mg ha™' to 2.11 (+0.61) Mg ha™".

Nevertheless, in each scenario, the variability of the
harvestable forest residues consistently changed with the
changing clusters of parcels. In the release scenario 70%,
the harvestable volume of residues ranged between a
minimum of 1.40 (+1.37) m® ha™' to a maximum of 3.43
(+2.57) m*® ha™'. Such range proportionally broadened
with a percentage decrease of forest residues, showing
the widest range in the scenario 30%, in which the mini-
mum harvestable volume was 3.27 (£3.20) m® ha™!
whereas the maximum was 8.00 (+5.99) m® ha™'.

The potentially removable ROC followed the same
pattern as the harvestable volumes (Fig. 6). Indeed, as in
the case of forest residue volumes, in each scenario, the
ROC was higher for the cluster of parcels 1 and 5, in
which SOC was low.

3.5 Sustainability of forest residues removal

Overall, the CRyqex Of the forest residues potentially releas-
able on the forest floor range from a maximum value lower
than 0.23-107" in the baseline scenario to minimum values
of below 0.07-107" in the 30% release scenario. This ratio
decreased with an increase in the SOC of the forest parcel
clusters (Fig. 7). In the baseline scenario, the median values
of CRppgex ranged from 0.01 107! to 0.08 107", with the
maximum value observed in the forest parcel cluster 1,
where SOC is minimum, and a minimum value in cluster

6, which exhibited the highest content of SOC (Fig. 7). The
CRppgex decreased proportionally with the change in sce-
nario residue release of 70%, 50%, and 30% (Fig. 7). In the
cluster of parcels of the scenario 30%, the minimum CRy,gex
values vary from a minimum of 0.01-10™" in cluster 4 to a
maximum of 0.06:107" in cluster 3.

4 Discussion
The availability of forest residue volume has been assessed
by analyzing FMPs, suggesting that approximately 5800 m>
year " (0.66 m> ha' year™) of forest residue volume could
be potentially utilized for bio-economy purposes in the next
10 years. Over the last two decades, different studies have
assessed biomass availability obtained from different agri-
cultural and forestry activities, both in northern (Nonini
and Fiala 2021) and in southern Italy, especially for bioe-
nergy purposes (Cardinale et al. 2006; Motola et al. 2009).
Recently, the estimated potential biomass availability result-
ing from the management of forest areas in the regional
territory accounted for 225,500 tons of fresh woodchips
(Cozzi et al. 2013). Our study focused exclusively on the
availability of primary forest residues and simulated a set of
release scenarios of such residues on logging forest sites as
a sustainable practice to counteract soil degradation, espe-
cially for public forest stands with low soil organic matter.
On a large scale, the assessment of forest biomass resi-
dues requires an appropriate methodological approach
(allometric equations or expansion factors) in order to
avoid obtaining biased estimates (Somogyi et al. 2007).
Nevertheless, in our study, the unavailability of detailed
data and their heterogeneity causes uncertainty in the
application of the expansion factors. Although the ex-
pansion factors cannot be applied, the application of the
percentage values reported by Cozzi et al. (2013)
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Fig. 7 Boxplots of the residual carbon index (RCingex 107" for each of the four forest residues release scenarios. In the baseline scenario, 100% of
forest residues are released upon the forest floor of the logging site (forest parcel). In the three decreasing scenarios, the volume of residues
released progressively decrease from 70%, 50%, and 30%. Boxplots are ordered by increasing value of soil organic carbon stock (SOCS)
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realistically estimates the volume residue and their C
content. When data are unavailable or unrepresentative,
information from default values to approximate local
conditions should be considered (IPCC, 2003). However,
the application of expansion factor default values could
contribute to biased estimation of aboveground biomass
residues (Somogyi et al. 2007; Njana 2017).

We evaluated the sustainability of the harvested forest
residues by pointing out the trade-off between the removal
of biomass residues and their potential impact on the SOC
pool of the forests. The SOC content of each parcel was in-
volved in different residue release scenarios, relating them
to the C content of the harvested residue volumes left on
the forest floor. The high variability observed in SOC and
ROC at the forest parcels scale suggests that the manage-
ment of the release of forest residues should consider the
current SOC content and potential input of C from resi-
dues to the soil C pool. Accordingly, we suggested modu-
lating the amount of residues releasable on the logging site
on the ratio between the potential C fraction of the residues
returned to the soil and the C content of the forest soil.

The effects of removing the residues have shown con-
trasting results, ranging from a considerable decrease to
no effect on the soil C stocks (Cozzi et al. 2013). Addition-
ally, consistent levels of biogenic CO, are emitted when
the residues are left exposed due to heterotrophic decom-
position processes (Cozzi et al. 2013). However, currently,
the optimum amount of forest residues potentially incor-
porable in the organic soil C pool cannot be predicted.
Since the SOC is associated with the nutrient availability
in soil (related to cation exchange capacity), reducing the
C input to the soil in addition to the conventional stem-
only harvesting has the potential to deplete the soil C pool
and compromise the fertility of forest soil (Achat et al
2015). Despite this, further research is needed to better
understand the contribution of C release from forest resi-
dues and how their removal impacts soil degradation in
Mediterranean mountain environments.

However, by altering the C input to the soil, the man-
agement activities of residues can influence the near- and
long-term soil C stocks in forests. These residues, mainly
composed of small branches and stem shreds, are usually
left on the forest floor due to unfavorable economic cir-
cumstances (Sahoo et al. 2019) or burnt on site. In agree-
ment with these standard practices, we define a baseline
scenario in which forest residues are left on the forest
floor to decompose, simulating a set of precautionary sce-
narios with a minimum conservative release of 30% of the
total forest residues. At a global scale, all forest biomass
management guidelines advise leaving a minimum
amount of residues on site, although they vary markedly
according to forest physiognomies and size of forest resi-
dues (Titus et al. 2021). Conventionally, for forest sites
where harvested residues can be utilized, guidelines
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suggest retaining a minimum percentage of residues
around 20-30% of their total harvestable amount (Titus
et al. 2021). In this context, the simulated release scenarios
of 50% and 70% agree with the restrictive guidelines of
European countries, which recommend leaving 50-66% of
harvest residues on site (Forestry Commission 2009).

In addition, relevant concerns have been expressed about
the effects of forestry residue extraction on soil fertility be-
cause their removal is associated with the depletion of
macro- and micro-nutrients. Such depletion depends on the
removed fraction types of tree biomass (Lattimore et al.
2009; Ponder et al. 2012; Achat et al. 2015). In broadleaved
deciduous stands, harvesting forest residues mainly originates
from the branch and stem fractions, which are both charac-
terized by consistent concentrations of micro- (iron and so-
dium) and macro-nutrients (potassium, calcium, and
phosphorus), especially in their respective bark fractions
(Achat et al. 2015). From this perspective, although above-
ground biomass content in macro- and micro-nutrients is
both site- and species-specific, the degree to which such
branches and stem residues are left in situ firmly determines
the level of impact of biomass extraction on forest soil min-
eral nutrients (European Environment Agency 2006).

In recent years, the biomass demand for novel materials
(biochemicals) has received more attention as compared
to energy usage. Available biomass residues could alterna-
tively be used more efficiently than energy usage (Braghir-
oli and Passarini 2020). Although branches, tree tops, and
bark make up the heterogeneous forest residues from for-
est operations, several technological approaches have been
developed to convert them into wood-based composite
panels. Surfactants and solvents currently find essential
bio-based applications, although these applications are
also gradually shifting toward biomass residuals compost-
ing (Bout et al. 2019). These technological advances allow
for the value addition to biomass residue and reconsider-
ation of their use toward greater efficiency and environ-
mental compatibility. From a bioenergy perspective,
investigating the availability and quantity of residual forest
woody materials helps to understand the feasibility of co-
generation or trigeneration plants powered by biomass,
which could integrate the production of thermal and elec-
trical energy mix rather than create district energy systems
(Fuchs et al. 2016). In this context, the high annual vari-
ability in demand for roundwood, the necessity of sub-
stantial investments, and the high cost of transportation
significantly reduce the companies' gross operating mar-
gins, making their use disadvantageous (Pergola et al.
2020). The possibility of integrating profitability with the
additional economic value from these residues could rep-
resent a significant incentive to support forestry sector in-
vestments, which is currently in decline in many
Mediterranean areas. Identifying sustainable actions aimed
at revitalizing and increasing the multifunctionality of the
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forest sector, such as developing the bio-based sector,
could provide value to forest residues that are underuti-
lized, becoming an opportunity for local socio-economic
development.

5 Conclusions

The availability of forest residues was investigated in the
public forest land of the Basilicata region. Because
extracting forest residues to obtain bio-based products
can generate environmental impacts, especially reduced
soil fertility, this study aimed to minimize such impacts
by simulating the release of forest residues on logging
sites according to the organic C content of forest parcel,
using a scenario analysis compared with a baseline. Al-
though the inventoried forest stands accounted for 2.2%
of the total forests of the Basilicata region, the analysis
of FMPs represents a pilot study on sustainably man-
aging the forest residues with minimum effect on soil
fertility. In the next 10 years, the estimated availability of
5800 m> year " of biomass residues could represent an
integrative resource in the production of the energy mix
and a suitable alternative for the bio-based industrial
sector. However, managing the harvesting of forest resi-
dues according to their potential contributes to the con-
tent of C in the soil, which represents a criterion for the
sustainable management of soil nutrients and C pools.

6 Appendix
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Fig. 9 Percentage contribution of the stand (mean annual increment -
MAI, aboveground standing volume - ASV), sail (soil organic carbon
stocks - SOC), and topographic (Altitude) variables on both first (Dim1)
and second (Dim2) components of K-means clustering plots of forest
parcels. The symbol * indicates variables with significant contribution
over the expected uniform contribution of 25%, on both first and
second dimension
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