Abdalati W, Zwally HJ, Bindschadler R, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98:735–751
Article
Google Scholar
Achard F, Beuchle R, Mayaux P, Stibig H-J, Bodart C, Brink A, Carboni S, Desclée B, Donnay F, Eva HD, Lupi A, Raši R, Seliger R, Simonetti D (2014) Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob Chang Biol 20:2540–2554. doi:10.1111/gcb.12605
Article
PubMed Central
PubMed
Google Scholar
Alvarado-Celestino E, Morfín-Ríos JE, Jardel-Peláez EJ, Vihnanek RE, Wright DK, Michel-Fuentes JM, Wright CS, Ottmar RD, Sandberg DV, Nájera-Díaz A (2008) Photo series for quantifying forest fuels in Mexico: montane subtropical forests of the Sierra Madre del Sur and temperate forests and montane shrubland of the northern Sierra Madre Oriental. Pacific Wildland Fire Sciences Laboratory Special Pub. No. 1. University of Washington, College of Forest Resources, Seattle, p 93
Google Scholar
Andersen H-E, Reutebuch SE, McGaughey RJ (2006) A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods. Can J Remote Sens 32:355–366. doi:10.5589/m06-030
Article
Google Scholar
Asner GP, Martin RE (2008) Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front Ecol Environ 7:269–276
Article
Google Scholar
Asner G, Keller M, Pereira R, Zweede J (2002) Remote sensing of selective logging in Amazonia: assessing limitations based on detailed field observations, Landsat ETM+, and textural analysis. Remote Sens Environ 80:483–486
Article
Google Scholar
Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480--482
Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E, Secada L, Valqui M, Hughes RF (2010) High-resolution forest carbon stocks and emissions in the Amazon. Proc Natl Acad Sci 107:16738–16742. doi:10.1073/pnas.1004875107
Article
CAS
PubMed Central
PubMed
Google Scholar
Asner G, Mascaro J, Anderson C, Knapp D, Martin R, Kennedy-Bowdoin T, van Breugel M, Davies S, Hall J, Muller-Landau H, Potvin C, Sousa W, Wright J, Bermingham E (2013) High-fidelity national carbon mapping for resource management and REDD+. Carb Bal Manag 8:7
Article
CAS
Google Scholar
Asner GP, Martin RE, Anderson CB, Knapp DE (2015) Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens Environ 158:15–27
Article
Google Scholar
Avery TE (1996) Forester’s guide to Aerial photo interpretation. Agriculture Handbook N.308, U.S. Department of Agriculture, Forest Service
Baccini A, GP Asner (2013) Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Manag 4
Baccini A, Laporte N, Goetz SJ, Sun M, Dong H (2008) A first map of tropical Africa's above-ground biomass derived from satellite imagery. Environ Res Lett 3
Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Chang 2:182–185
Article
CAS
Google Scholar
Baltsavias EP (1999) Airborne laser scanning: basic relations and formulas. ISPRS J Photogramm Remote Sens 54:199–214
Article
Google Scholar
Barbier N, Proisy C, Véga C, Sabatier D, Couteron P (2011) Bidirectional texture function of high resolution optical images of tropical forest: an approach using LiDAR hillshade simulations. Remote Sens Environ 115:167–179
Article
Google Scholar
Barbier N, Couteron P, Gastelly-Etchegorry JP, Proisy C (2012) Linking canopy images to forest structural parameters: potential of a modeling framework. Ann For Sci 69:305–311
Article
Google Scholar
Barducci A, Guzzi D, Marcoionni P, Pippi I (2002) Infrared detection of active fires and burnt areas: theory and observations. Infrared Phys Technol 43:119–125. doi:10.1016/S1350-4495(02)00129-9
Article
Google Scholar
Bassuk N, Grabosky J, Mucciardi A, Raffel G (2011) Groundpenetrating Radar accurately locates tree roots in two soil media under pavement. Arboricult Urban For 37:160–166
Google Scholar
Bastin J-F, Barbier N, Couteron P, Adams B, Shapiro A, Bogaert J, De Cannière C (2014) Aboveground biomass mapping of African forest mosaics using canopy texture analysis: toward a regional approach. Ecol Appl 24:1984–2001
Article
Google Scholar
Bauwens S, Bartholomeus H, Piboule A, Claders K, Lejeune P (2014) Forest inventory with Terrestrial LiDAR: what about Hand-Held Mobile LiDAR? ForestSat
Boudreau J, Nelson RF, Margolis HA, Beaudoin A, Guindon L, Kimes DS (2008) Regional aboveground forest biomass using airborne and spaceborne lidar in Quebec. Remote Sens Environ 112:3876–3890
Article
Google Scholar
Calders K, Newnham G, Burt A, Murphy S, Raumonen P, Herold M, Culvenor D, Avitabile V, Disney M, Armston J, Kaasalainen M (2014) Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods Ecol Evol. doi:10.1111/2041-210x.12301
Google Scholar
Caldwell BT (2014) An investigation of root biomass in forested ecosystems. University of California, Berkeley
Google Scholar
Chave J, Condit R, Lao S, Caspersen J, Foster RB, Hubbell SP (2003) Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J Ecol 91:240–252
Article
Google Scholar
Chave J, Réjou-Méchain M, Burquez A, Chidumayo EN, Colgan M, Delitti W, Duque AJ, Welington D, Fearnside PM, Goodman R, Henry M, Martínez-Yrízar A, Mugasha W, Muller-Landau H, Mencuccini M, Nelson B, Ngomanda A, Nogueira E, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan C, Saldarriaga JG, Vieilledent G (2014) Improved pantropical allometric models to estimate the above ground biomass of tropical forests. Glob Chang Biol 20:3177–3190. doi:10.1111/gcb.12629
Article
PubMed
Google Scholar
Chisholm RA, Cui J, Lum SK, Chen BM (2013) UAV LiDAR for below-canopy forest surveys. J Unmanned Veh Syst 1:61–68
Article
Google Scholar
Colgan MS, Baldeck CA, Féret JB, Asner GP (2012) Mapping savanna tree species at ecosystem scales using support vector machine classification and BRDF correction on airborne hyperspectral and LiDAR data. Remote Sens 4:3462–3480
Article
Google Scholar
Couteron P, Pélissier R, Nicolini E-A, Paget D (2005) Predicting tropical forest stand structure parameters from Fourier transform of very high-resolution remotely sensed canopy images. J Appl Ecol 42:1121–1128
Article
Google Scholar
Detto M, Muller-Landau HC, Mascaro J, Asner GP (2013) Hydrological networks and associated topographic variation as templates for the spatial organization of tropical forest vegetation. PLoS One 8:e76296
Article
CAS
PubMed Central
PubMed
Google Scholar
Di Gregorio A, Jansen LJM (2005) Land cover classification system classification concepts and user manual software version (2). In: 8 EaNRS (ed). Food and Agriculture Organization of the United Nations, Rome
Dinh Ho Tong M, Le Thuy T, Rocca F, Tebaldini S, d'Alessandro MM, Villard L (2014) Relating P-band synthetic aperture Radar tomography to tropical forest biomass. IEEE Trans Geosci Remote Sens 52:967–979. doi:10.1109/tgrs.2013.2246170
Article
Google Scholar
Dobson MC, Ulaby FT, LeToan T, Beaudoin A, Kasischke ES, Christensen N (1992) Dependence of Radar backscatter on coniferous forest biomass. IEEE Trans Geosci Remote Sens 30:412–415
Article
Google Scholar
FAO (2006) Understanding national forest programmes guidance for practitioners. The National Programme Facility, Food and Agriculture Organization of the United Nations, Rome
Google Scholar
FAO (2010) Global forest ressources assessment 2010. The Food and Agriculture Organization of the United Nations
FAO (2013) Voluntary guidelines on national forest monitoring—draft version for discussion of sections I and II. The Food and Agriculture Organization of the United Nations
FAO, JRC (2012) Global forest land-use change 1990–2005. In: Lindquist EJ, D’Annunzio R, Gerrand A, MacDicken K, Achard F, Beuchle R, Brink A, Eva HD, Mayaux P, San-Miguel-Ayanz J, Stibig H-J (eds) FAO Forestry Paper No 169. Food and Agriculture Organization of the United Nations, European Commission Joint Research Centre. FAO, Rome
Google Scholar
Féret J, Asner GP (2013) Tree species discrimination in tropical forests using airborne imaging spectroscopy. IEEE Trans Geosci Remote Sens 51:73–84
Article
Google Scholar
Global Forest Observations Initiative (2014) Integrating remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests: methods and guidance from the Global Forest Observations Initiative. Group on Earth Observations, Geneva
Google Scholar
Goetz S, Dubayah R (2011) Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag 2:231–244
Article
Google Scholar
GOFC-GOLD (2010) A sourcebook of methods and procedures for monitoring and reporting anthropogenic greenhouse gas emissions and removals caused by deforestation, gains and losses of carbon stocks in forests remaining forests, and forestation. GOFC-GOLD
Govender M, Chetty K, Bulcock H (2007) A review of hyperspectral remote sensing and its applicationin vegetation and water resource studies. Water SA 33
Guo L, Chen J, Cui X, Fan B, Lin H (2013) Application of ground penetrating Radar for coarse root detection and quantification: a review. Plant Soil 362:1–23. doi:10.1007/s11104-012-1455-5
Article
CAS
Google Scholar
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853. doi:10.1126/science.1244693
Article
CAS
PubMed
Google Scholar
Henry M, Maniatis D, Gitz V, Huberman D, Valentini R (2011) Implementation of REDD+ in sub-Saharan Africa: state of knowledge, challenges and opportunities. Environ Dev Econ 16:381--404. doi:10.1017/S1355770X11000155
Hernández-Clemente R, Navarro-Cerrillo RM, Ramírez FJR, Hornero A, Zarco-Tejada PJ (2014) A novel methodology to estimate single-tree biophysical parameters from 3D digital imagery compared to aerial laser scanner data. Remote Sens 6:11627–11648
Article
Google Scholar
Heurich M, Thoma F (2008) Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry 81:645–661. doi:10.1093/forestry/cpn038
Article
Google Scholar
Hosoi F, Nakai Y, Omasa K (2013) 3-D voxel-based solid modeling of a broad-leaved tree for accurate volume estimation using portable scanning lidar. ISPRS J Photogramm Remote Sens 82:41–48
Article
Google Scholar
INPE (2006) Sistema DETER: Deteccao de Desmatamento em Tempo Real
INPE (2008) Projeto PRODES: Monitoramento da floresta Amazonica Brasileira por satelite
Jusoff K (2009) Precision forestry using Airborne Hyperspectral Imaging Sensor. J Agric Sci 1
Kleinn C (2002) New technologies and methodologies for national forest inventories. Unasylva 210
Laes D, Reutebuch SE, McGaughey RJ, Mitchell B (2011) Guidelines to estimate forest inventory parameters from lidar and field plot, companion document to the advanced lidar applications—forest inventory modeling class
Le Toan T, Beaudoin A, Riom J, Guyon D (1992) Relating forest biomass to SAR data. IEEE Trans Geosci Remote Sens 30:403–411
Article
Google Scholar
Le Toan T, Quegan S, Davidson MWJ, Balzter H, Paillou P, Papathanassiou K, Plummer S, Rocca F, Saatchi S, Shugart H, Ulander L (2011) The BIOMASS mission: mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens Environ 115:2850–2860. doi:10.1016/j.rse.2011.03.020
Article
Google Scholar
Lefsky M, Harding D, Keller M, Cohen W, Carabajal C, Espirito-Santo F, Hunter M, de Oliveira R (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett:22
Li YZ, Anderson H-E, McGaughey R (2008) A comparison of statistical methods for estimating forest biomass from light detection and ranging data. West J Appl For 23:223–231
Google Scholar
Liang X, Kukko A, Kaartinen H, Hyyppä J, Yu X, Jaakkola A, Wang Y (2014) Possibilities of a personal laser scanning system for forest mapping and ecosystem services. Sensors 14:1228–1248
Article
PubMed Central
PubMed
Google Scholar
Loudermilk EL, Singhania A, Fernandez JC, Hiers JK, O’Brien JJ, Cropper WP Jr., Slatton KC, Mitchell RJ (2007) Application of ground-based LIDAR for fine-scale forest fuel modeling. USDA Forest Service Processing RMRS-P-46CD
Lu D, Li G, Moran E, Dutra L, Batistella M (2014) The roles of textural images in improving land-cover classification in the Brazilian Amazon. Int J Remote Sens 35:8188–8207
Article
Google Scholar
Malhi Y, Román-Cuesta RM (2008). Analysis of lacunarity and scales of spatial homogeneity in IKONOS satelliteimages of tropical forest canopies. Remote Sens Environ 112:2074--2087
Article
Google Scholar
Maniatis D, Mollicone D (2010) Options for sampling and stratification for national forest inventories to implement REDD + under the UNFCCC. Carb Bal Manag 5:1–9
Article
Google Scholar
Martin ME, Newman SD, Aber JD, Congalton RG (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sens Environ 65:249–254
Article
Google Scholar
Mascaro J, Asner GP, Davies S, Dehgan A, Saatchi S (2014) These are the days of lasers in the jungle. Carb Bal Manag 9:1–3
Article
Google Scholar
Mermoz S, Réjou-Méchain M, Villard L, Le Toan T, Rossi V, Gourlet-Fleury S (2015) Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens Environ 159:307–317
Mermoz S, Le Toan T, Villard L, Réjou-Méchain M, Seifert-Granzin J (2014) Biomass assessment in the cameroon savanna using ALOS PALSAR data. Remote Sens Environ Accepted
Mitchard ET, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris N, Brown S (2013) Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps. Carb Bal Manag 8:10
Article
Google Scholar
Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Chang Biol 12:84–96
Article
Google Scholar
Molto Q, Rossi V, Blanc L (2013) Error propagation in biomass estimation in tropical forests. Methods Ecol Evol 4:175–183. doi:10.1111/j.2041-210x.2012.00266.x
Article
Google Scholar
Morsdorf F, Koetz B, Meier E, Itten KI, Allgöwer B (2006) Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction. Remote Sens Environ 104:50–61
Article
Google Scholar
Ottmar RD, Hardy CC, Vihnanek RE (1990) Stereo photo series for quantifying forest residues in the douglas-fir-hemlock type of the willamette national forest. General Technical Report PNW-GTR-258, US Department of Agriculture, Forest Service Pacific Northwest, Research Station
Ottmar RD, Vihnanek RE, Miranda HS, Sata MN, Andrade SM (2001) Stereo photo series for quantifying cerrado fuels in central Brazil. General Technical Report PNW-GTR-519. USDA Forest Service, Pacific Northwest Research Station, Portland, p 87
Google Scholar
Pearson TRH, Brown S, Casarim FM (2014) Carbon emissions from tropical forest degradation caused by logging. Environ Res Lett 9:034017
Picard N, Saint André L, Henry M (2012) Manual for building tree volume and biomass allometric equations: from field measurement to prediction. CIRAD, FAO
Ploton P, Pélissier R, Proisy C, Flavenot T, Barbier N, Rai SN, Couteron P (2012) Assessing aboveground tropical forest biomass using Google Earth canopy images. Ecol Appl 22:993–1003
Article
PubMed
Google Scholar
Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392
Article
Google Scholar
Radtke PJ, Bolstad PV (2001) Laser point-quadrat sampling for estimating foliage-height profiles in broad-leaved forests. Can J For Res 31:410–418
Article
Google Scholar
Réjou-Méchain M, Muller-Landau HC, Detto M, Thomas SC, Le Toan T, Saatch iSS, Barreto-Silva JS, Bourg NA, Bunyavejchewin S, Butt N, Brockelman WY, Cao M, Cárdenas D, Chiang J-M, Chuyong GB, Clay K, Condit R, Dattaraja HS, Davies SJ, Duque A, Esufali S, Ewango C, Fernando RHS, Fletcher CD, Gunatilleke IAUN, Hao Z, Harms KE, Hart TB, Hérault B, Howe RW, Hubbell SP, Johnson DJ, Kenfack D, Larson AJ, Lin L, Lin Y, Lutz JA, Makana J-R, Malhi Y, Marthews TR, McEwan RW, McMahon SM, McShea WJ, Muscarella R, Nathalang A, Noor NSM, Nytch CJ, Oliveira AA, Phillips RP, Pongpattananurak N, Punchi-Manage R, Salim R, Schurman J, Sukumar R, Suresh HS, Suwanvecho U, Thomas DW, Thompson J, Uríarte M, Valencia R, Vicentini A, Wolf AT, Yap S, Yuan Z, Zartman CE, Zimmerman JK, Chave J (2014) Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11:6827--6840. doi: 10.5194/bg-11-6827-2014
Reutebuch SE, McGaughey RJ, Andersen H-E, Carson WW (2003) Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can J Remote Sens 29:527–535. doi:10.5589/m03-022
Article
Google Scholar
Saatchi S, Harris N, Brown S, Lefsky M, Mitchard E, Salas W, Zutta B, Buermann W, Lewis S, Hagen S (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9904
Article
CAS
PubMed Central
PubMed
Google Scholar
Santoro M, Beer C, Cartus O, Schmullius C, Shvidenko A, McCallum I, Wegmüller U, Wiesmann A (2011) Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens Environ 115:490–507
Article
Google Scholar
Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosci (2005--2012) 116, G04021. doi:10.1029/2011jg001708
Spurr SH (1948) Aerial photography. Unasylva—forest resources of the world 2
Stephens PR, Kimberley MO, Beets PN, Paul TSH, Searles N, Bell A, Brack C, Broadley J (2012) Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sens Environ 117:348–357. doi:10.1016/j.rse.2011.10.009
Article
Google Scholar
St-Onge B, Jumelet J, Cobello M, Véga C (2004) Measuring individual tree height using a combination of stereophotogrammetry and lidar. Can J For Res 34:2122–2130
Article
Google Scholar
St-Onge B, Vega C, Fournier RA, Hu Y (2008) Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int J Remote Sens 29:3343–3364
Article
Google Scholar
Straub C, Stepper C, Seitz R, Waser LT (2013) Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Can J For Res 43:731–741. doi:10.1139/cjfr-2013-0125
Article
Google Scholar
Thurner M, Beer C, Santoro M, Carvalhais N, Wutzler T, Schepaschenko D, Shvidenko A, Kompter E, Ahrens B, Levick SR, Schmullius C (2014) Carbon stock and density of northern boreal and temperate forests. Glob Ecol Biogeogr 23:297–310. doi:10.1111/geb.12125
Article
Google Scholar
Trichon V (2001) Crown typology and the identification of rain forest trees on large-scale aerial photographs. Plant Ecol 153:301–312
Article
Google Scholar
UNFCCC (2009) 4/CP.15 Methodological guidance for activities relating to reducing emissions from deforestation and forest degradation and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries. FCCC/CP/2009/11/Add1. Report of the Conference of the Parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009
van Leeuwen M, Nieuwenhuis M (2010) Retrieval of forest structural parameters using LiDAR remote sensing. Eur J For Res 129:749–770
Article
Google Scholar
Wallace L, Lucieer A, Watson C, Turner D (2012) Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 4:1519–1543
Article
Google Scholar
Woodhouse IH, Mitchard ET, Brolly M, Maniatis D, Ryan CM (2012) Radar backscatter is not a'direct measure'of forest biomass. Nat Clim Chang 2:556–557
Article
Google Scholar
Wulder MA, White JC, Nelson RF, Næsset E, Ørka HO, Coops NC, Hilker T, Bater CW, Gobakken T (2012) Lidar sampling for large-area forest characterization: a review. Remote Sens Environ 121:196–209. doi:10.1016/j.rse.2012.02.001
Article
Google Scholar
Xing Y, de Gier A, Zhang J, Wang L (2010) An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: a case study in Changbai mountains, China. Int J Appl Earth Obs Geoinf 12:385–392
Article
Google Scholar
Yao T, Yang X, Zhao F, Wang Z, Zhang Q, Jupp D, Lovell J, Culvenor D, Newnham G, Ni-Meister W, Schaaf C, Woodcock C, Wang J, Li X, Strahler A (2011) Measuring forest structure and biomass in New England forest stands using Echidna ground-based lidar. Remote Sens Environ 115:2965–2974. doi:10.1016/j.rse.2010.03.019
Article
Google Scholar
Zolkos S, Goetz S, Dubayah R (2013) A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing. Remote Sens Environ 128:289–298
Article
Google Scholar