Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin J-M, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat Ecol Evol 1:1285–1291. https://doi.org/10.1038/s41559-017-0248-x
Article
PubMed
Google Scholar
Aguilos M, Stahl C, Burban B, Hérault B, Courtois E, Coste S, Wagner F, Ziegler C, Takagi K, Bonal D (2019) Interannual and seasonal variations in ecosystem transpiration and water use efficiency in a tropical rainforest. Forests 10:14. https://doi.org/10.3390/f10010014
Article
Google Scholar
Anderegg WRL, Flint A, C-y H, Flint L, Berry JA, Davis FW, Sperry JS, Field CB (2015) Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8:367. https://doi.org/10.1038/ngeo2400
Article
CAS
Google Scholar
Anderegg WR, Klein T, Bartlett M, Sack L, Pellegrini AF, Choat B, Jansen S (2016) Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc Natl Acad Sci 113:5024–5029. https://doi.org/10.1073/pnas.1525678113
Article
CAS
PubMed
Google Scholar
Bartlett MK, Scoffoni C, Ardy R, Zhang Y, Sun S, Cao K, Sack L (2012a) Rapid determination of comparative drought tolerance traits: using an osmometer to predict turgor loss point. Methods Ecol Evol 3:880–888. https://doi.org/10.1111/j.2041-210X.2012.00230.x
Article
Google Scholar
Bartlett MK, Scoffoni C, Sack L (2012b) The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol Lett 15:393–405. https://doi.org/10.1111/j.1461-0248.2012.01751.x
Article
PubMed
Google Scholar
Bartlett MK, Klein T, Jansen S, Choat B, Sack L (2016) The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proc Natl Acad Sci 113:13098–13103. https://doi.org/10.1073/pnas.1604088113
Article
CAS
PubMed
Google Scholar
Bennett AC, McDowell NG, Allen CD, Anderson-Teixeira KJ (2015) Larger trees suffer most during drought in forests worldwide. Nat Plants 1:15139. https://doi.org/10.1038/nplants.2015.139
Article
PubMed
Google Scholar
Bonal D, Burban B, Stahl C, Wagner F, Herault B (2016) The response of tropical rainforests to drought-lessons from recent research and future prospects. Ann For Sci 73:27–44. https://doi.org/10.1007/s13595-015-0522-5
Article
PubMed
Google Scholar
Brodribb TJ (2017) Progressing from 'functional' to mechanistic traits. The New phytologist 215:9–11. https://doi.org/10.1111/nph.14620
Article
PubMed
Google Scholar
Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant Cell Environ 26:443–450. https://doi.org/10.1046/j.1365-3040.2003.00975.x
Article
Google Scholar
Choat B, Sack L, Holbrook NM (2007) Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. The New phytologist 175:686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x
Article
PubMed
Google Scholar
Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martinez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755. https://doi.org/10.1038/nature11688
Article
CAS
PubMed
Google Scholar
Choat B, Brodribb TJ, Brodersen CR, Duursma RA, Lopez R, Medlyn BE (2018) Triggers of tree mortality under drought. Nature 558:531–539. https://doi.org/10.1038/s41586-018-0240-x
Article
CAS
PubMed
Google Scholar
Christoffersen BO, Gloor M, Fauset S, Fyllas NM, Galbraith DR, Baker TR, Kruijt B, Rowland L, Fisher RA, Binks OJ, Sevanto S, Xu C, Jansen S, Choat B, Mencuccini M, McDowell NG, Meir P (2016) Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro). Geosci Model Dev 9:4227–4255. https://doi.org/10.5194/gmd-9-4227-2016
Article
Google Scholar
Cochard H, Delzon S (2013) Hydraulic failure and repair are not routine in trees. Ann For Sci 70:659–661. https://doi.org/10.1007/s13595-013-0317-5
Article
Google Scholar
Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S (2013) Methods for measuring plant vulnerability to cavitation: a critical review. J Exp Bot 64:4779–4791. https://doi.org/10.1093/jxb/ert193
Article
CAS
PubMed
Google Scholar
Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT (2018) Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant Cell Environ 41:2869–2881. https://doi.org/10.1111/pce.13418
Article
CAS
PubMed
Google Scholar
Delzon S (2015) New insight into leaf drought tolerance. Funct Ecol 29:1247–1249. https://doi.org/10.1111/1365-2435.12500
Article
Google Scholar
Delzon S, Cochard H (2014) Recent advances in tree hydraulics highlight the ecological significance of the hydraulic safety margin. The New phytologist 203:355–358. https://doi.org/10.1111/nph.12798
Article
PubMed
Google Scholar
Delzon S, Douthe C, Sala A, Cochard H (2010) Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell Environ 33:2101–2111. https://doi.org/10.1111/j.1365-3040.2010.02208.x
Article
PubMed
PubMed Central
Google Scholar
Duffy PB, Brando P, Asner GP, Field CB (2015) Projections of future meteorological drought and wet periods in the Amazon. Proc Natl Acad Sci 112:13172–13177. https://doi.org/10.1073/pnas.1421010112
Article
CAS
PubMed
Google Scholar
Duursma RA, Blackman CJ, Lopez R, Martin-StPaul NK, Cochard H, Medlyn BE (2019) On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. The New phytologist 221:693–705. https://doi.org/10.1111/nph.15395
Article
PubMed
Google Scholar
Esquivel-Muelbert A, Dexter KG, Lewis SL, Brienen RJW, Feldpausch TR, Lloyd J, Monteagudo-Mendoza A, Arroyo L, Alvarez-Davila E, Higuchi N, Marimon BS, Marimon-Junior BH, Silveira M, Vilanova E, Gloor E, Malhi Y, Chave J, Barlow J, Bonal D, Davila Cardozo N, Erwin T, Fauset S, Herault B, Laurance S, Poorter L, Qie L, Stahl C, Sullivan MJP, Ter Steege H, Vos VA, Zuidema PA, Almeida E, Almeida de Oliveira E, Andrade A, Vieira SA, Aragao L, Araujo-Murakami A, Arets E, Aymard CG, Baraloto C, Camargo PB, Barroso JG, Bongers F, Boot R, Camargo JL, Castro W, Chama Moscoso V, Comiskey J, Cornejo Valverde F, Lola da Costa AC, Del Aguila Pasquel J, Di Fiore A, Fernanda Duque L, Elias F, Engel J, Flores Llampazo G, Galbraith D, Herrera Fernandez R, Honorio Coronado E, Hubau W, Jimenez-Rojas E, Lima AJN, Umetsu RK, Laurance W, Lopez-Gonzalez G, Lovejoy T, Aurelio Melo Cruz O, Morandi PS, Neill D, Nunez Vargas P, Pallqui Camacho NC, Parada Gutierrez A, Pardo G, Peacock J, Pena-Claros M, Penuela-Mora MC, Petronelli P, Pickavance GC, Pitman N, Prieto A, Quesada C, Ramirez-Angulo H, Rejou-Mechain M, Restrepo Correa Z, Roopsind A, Rudas A, Salomao R, Silva N, Silva Espejo J, Singh J, Stropp J, Terborgh J, Thomas R, Toledo M, Torres-Lezama A, Valenzuela Gamarra L, van de Meer PJ, van der Heijden G, van der Hout P, Vasquez Martinez R, Vela C, Vieira ICG, Phillips OL (2019) Compositional response of Amazon forests to climate change. Glob Chang Biol 25:39–56. https://doi.org/10.1111/gcb.14413
Article
PubMed
Google Scholar
Ewers FW, Fisher JB (1989) Techniques for measuring vessel lengths and diameters in stems of woody plants. Am J Bot 76:645–656. https://doi.org/10.1002/j.1537-2197.1989.tb11360.x
Article
Google Scholar
Fargeon H, Aubry-Kientz M, Brunaux O, Descroix L, Gaspard R, Guitet S, Rossi V, Hérault B (2016) Vulnerability of commercial tree species to water stress in logged forests of the Guiana Shield. Forests 7:105. https://doi.org/10.3390/f7050105
Article
Google Scholar
Fisher RA, Williams M, Do Vale RL, Da Costa AL, Meir P (2006) Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant Cell Environ 29:151–165. https://doi.org/10.1111/j.1365-3040.2005.01407.x
Article
PubMed
Google Scholar
Hochberg U, Rockwell FE, Holbrook NM, Cochard H (2018) Iso/Anisohydry: A Plant-Environment Interaction Rather Than a Simple Hydraulic Trait. Trends Plant Sci 23:112–120. https://doi.org/10.1016/j.tplants.2017.11.002
Article
CAS
PubMed
Google Scholar
Jacobsen AL, RB Pratt, MF Tobin, UG Hacke, FW Ewers (2012) A global analysis of xylem vessel length in woody plants. American Journal of Botany 99:1583-1591. https://doi.org/10.3732/ajb.1200140
Article
Google Scholar
Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612. https://doi.org/10.1111/j.1365-3040.1991.tb01532.x
Article
Google Scholar
Lobo A, Torres-Ruiz JM, Burlett R, Lemaire C, Parise C, Francioni C, Truffaut L, Tomaskova I, Hansen JK, Kjaer ED, Kremer A, Delzon S (2018) Assessing inter- and intraspecific variability of xylem vulnerability to embolism in oaks. For Ecol Manag 424:53–61. https://doi.org/10.1016/j.foreco.2018.04.031
Article
Google Scholar
Machado J-L, Tyree MT (1994) Patterns of hydraulic architecture and water relations of two tropical canopy trees with contrasting leaf phenologies: Ochroma pyramidale and Pseudobombax septenatum. Tree Physiol 14:219–240. https://doi.org/10.1093/treephys/14.3.219
Article
CAS
PubMed
Google Scholar
Maherali H, Pockman WT, Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199. https://doi.org/10.1890/02-0538
Article
Google Scholar
Marechaux I, Bartlett MK, Sack L, Baraloto C, Engel J, Joetzjer E, Chave J (2015) Drought tolerance as predicted by leaf water potential at turgor loss point varies strongly across species within an Amazonian forest. Funct Ecol 29:1268–1277. https://doi.org/10.1111/1365-2435.12452
Article
Google Scholar
Maréchaux I, Bartlett MK, Gaucher P, Sack L, Chave J (2016) Causes of variation in leaf-level drought tolerance within an Amazonian forest. J Plant Hydraul 3:e004. https://doi.org/10.20870/jph.2016.e004
Article
Google Scholar
Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447. https://doi.org/10.1111/ele.12851
Article
PubMed
Google Scholar
Mayle FE, Power MJ (2008) Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philos Trans R Soc Lond Ser B Biol Sci 363:1829–1838. https://doi.org/10.1098/rstb.2007.0019
Article
Google Scholar
Meinzer FC, Woodruff DR, Domec JC, Goldstein G, Campanello PI, Gatti MG, Villalobos-Vega R (2008) Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156:31–41. https://doi.org/10.1007/s00442-008-0974-5
Article
PubMed
Google Scholar
Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930. https://doi.org/10.1111/j.1365-2435.2009.01577.x
Article
Google Scholar
Mencuccini M, Minunno F, Salmon Y, Martinez-Vilalta J, Holtta T (2015) Coordination of physiological traits involved in drought-induced mortality of woody plants. The New phytologist 208:396–409. https://doi.org/10.1111/nph.13461
Article
CAS
PubMed
Google Scholar
Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015) Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environ 38:2652–2661. https://doi.org/10.1111/pce.12581
Article
CAS
PubMed
Google Scholar
Oliveira RS, Costa FRC, van Baalen E, de Jonge A, Bittencourt PR, Almanza Y, Barros FV, Cordoba EC, Fagundes MV, Garcia S, Guimaraes ZTM, Hertel M, Schietti J, Rodrigues-Souza J, Poorter L (2019) Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. The New phytologist 221:1457–1465. https://doi.org/10.1111/nph.15463
Article
PubMed
Google Scholar
Pammenter NW, Vander Willigen C (1998) A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol 18:589–593. https://doi.org/10.1093/treephys/18.8-9.589
Article
PubMed
Google Scholar
Phillips OL, van der Heijden G, Lewis SL, Lopez-Gonzalez G, Aragao L, Lloyd J, Malhi Y, Monteagudo A, Almeida S, Davila EA, Amaral I, Andelman S, Andrade A, Arroyo L, Aymard G, Baker TR, Blanc L, Bonal D, de Oliveira ACA, Chao KJ, Cardozo ND, da Costa L, Feldpausch TR, Fisher JB, Fyllas NM, Freitas MA, Galbraith D, Gloor E, Higuchi N, Honorio E, Jimenez E, Keeling H, Killeen TJ, Lovett JC, Meir P, Mendoza C, Morel A, Vargas PN, Patino S, Peh KSH, Cruz AP, Prieto A, Quesada CA, Ramirez F, Ramirez H, Rudas A, Salamao R, Schwarz M, Silva J, Silveira M, Slik JWF, Sonke B, Thomas AS, Stropp J, Taplin JRD, Vasquez R, Vilanova E (2010) Drought-mortality relationships for tropical forests. New Phytol 187:631–646. https://doi.org/10.1111/j.1469-8137.2010.03359.x
Article
PubMed
Google Scholar
Pivovaroff AL, Sack L, Santiago LS (2014) Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. The New phytologist 203:842–850. https://doi.org/10.1111/nph.12850
Article
PubMed
Google Scholar
Pivovaroff AL, Pasquini SC, De Guzman ME, Alstad KP, Stemke JS, Santiago LS, Field K (2016) Multiple strategies for drought survival among woody plant species. Funct Ecol 30:517–526. https://doi.org/10.1111/1365-2435.12518
Article
Google Scholar
Powell TL, Wheeler JK, de Oliveira AAR, da Costa ACL, Saleska SR, Meir P, Moorcroft PR (2017) Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Glob Chang Biol 23:4280–4293. https://doi.org/10.1111/gcb.13731
Article
PubMed
Google Scholar
Rowland L, da Costa AC, Galbraith DR, Oliveira RS, Binks OJ, Oliveira AA, Pullen AM, Doughty CE, Metcalfe DB, Vasconcelos SS, Ferreira LV, Malhi Y, Grace J, Mencuccini M, Meir P (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–122. https://doi.org/10.1038/nature15539
Article
CAS
PubMed
Google Scholar
Santiago LS, Bonal D, De Guzman ME, Avila-Lovera E (2016) Drought Survival Strategies of Tropical Trees. In: Goldstein G, Santiago LS (eds) Tropical Tree Physiology: Adaptations and Responses in a Changing Environment, pp 243–258
Chapter
Google Scholar
Santiago LS, De Guzman ME, Baraloto C, Vogenberg JE, Brodie M, Herault B, Fortunel C, Bonal D (2018) Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species. New Phytol 218:1015–1024. https://doi.org/10.1111/nph.15058
Article
PubMed
Google Scholar
Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett MK, Buckley TN, McElrone AJ, Sack L (2017) Outside-Xylem Vulnerability, Not Xylem Embolism, Controls Leaf Hydraulic Decline during Dehydration. Plant Physiol 173:1197–1210. https://doi.org/10.1104/pp.16.01643
Article
CAS
PubMed
PubMed Central
Google Scholar
Sperry JS, Tyree MT, Donnelly JR (1988) Vulnerability of xylem to embolism in a mangrove vs an inland species of Rhizophoraceae. Physiol Plant 74:276–283. https://doi.org/10.1111/j.1399-3054.1988.tb00632.x
Article
Google Scholar
Sperry JS, Hacke UG, Feild TS, Sano Y, Sikkema EH (2007) Hydraulic consequences of vessel evolution in angiosperms. Int J Plant Sci 168:1127–1139. https://doi.org/10.1086/520726
Article
Google Scholar
Stahl C, Burban B, Bompy F, Jolin ZB, Sermage J, Bonal D (2010) Seasonal variation in atmospheric relative humidity contributes to explaining seasonal variation in trunk circumference of tropical rain-forest trees in French Guiana. J Trop Ecol 26:393–405. https://doi.org/10.1017/s0266467410000155
Article
Google Scholar
Stahl C, Burban B, Wagner F, Goret J-Y, Bompy F, Bonal D (2013) Influence of seasonal variations in soil water availability on gas exchange of tropical canopy trees. Biotropica 45:155–164. https://doi.org/10.1111/j.1744-7429.2012.00902.x
Article
Google Scholar
Torres-Ruiz JM, Cochard H, Delzon S (2016) Why do trees take more risks in the Amazon? Journal of Plant Hydraulics 3:e005. https://doi.org/10.20870/jph.2016.e005
Article
Google Scholar
Tyree MT, Patiño S, Becker P (1998) Vulnerability to drought-induced embolism of Bornean heath and dipterocarp forest trees. Tree Physiol 18:583–588. https://doi.org/10.1093/treephys/18.8-9.583
Article
PubMed
Google Scholar
Urli M, Porte AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683. https://doi.org/10.1093/treephys/tpt030
Article
CAS
PubMed
Google Scholar
Wagner F, Rossi V, Stahl C, Bonal D, Hérault B (2012) Water availability is the main climate driver of neotropical tree growth. PLoS One 7:e34074. https://doi.org/10.1371/journal.pone.0034074
Article
CAS
PubMed
PubMed Central
Google Scholar
Wagner F, Rossi V, Stahl C, Bonal D, Hérault B (2013) Asynchronism in leaf and wood production in tropical forests: a study combining satellite and ground-based measurements. Biogeosciences 10:7307–7321. https://doi.org/10.5194/bg-10-7307-2013
Article
Google Scholar
Zhu S-D, Liu H, Xu Q-Y, Cao K-F, Ye Q, Poorter L (2016) Are leaves more vulnerable to cavitation than branches? Funct Ecol 30:1740–1744. https://doi.org/10.1111/1365-2435.12656
Article
Google Scholar
Zhu SD, Chen YJ, Ye Q, He PC, Liu H, Li RH, Fu PL, Jiang GF, Cao KF (2018) Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiol 38:658–663. https://doi.org/10.1093/treephys/tpy013
Article
PubMed
Google Scholar