Achat DL, Fortin M, Landmann G et al (2015) Forest soil carbon is threatened by intensive biomass harvesting. Sci Rep 5:15991
PubMed
PubMed Central
Google Scholar
Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:1–55
Google Scholar
Aubinet M, Grelle A, Ibrom A, Rannik Ü, Montcrieff J, Foken T, Kowalski AS, Martin PH, Berbiger P, Bernhofer C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilgaard K, Rebmann C, Snijders W, Valentini R, vesala T (2000) Estimates of the annual net carbon and water exchange of forests: The EUROFLX methodology. Adv Ecol Res. 30: 113-175.
Baker JS, Wade CM, Sohngen BL, Ohrel S, Fawcett AA (2019) Potential complementarity between forest carbon sequestration incentives and biomass energy expansion. Energy Policy 126:391–401
CAS
PubMed
PubMed Central
Google Scholar
Barba J, Cueva A, Bahn M, Barron-Gafford GA, Bond-Lamberty B, Hanson PJ, Jaimes A, Kulmala L, Pumpanen J, Scott RL, Wohlfahrt G (2018) Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agric For Meteorol 249:434–443
Google Scholar
BMEL (2015) The forests in Germany: Selected results of the third National Forest Inventory, BMEL, Bonn, p 52
Bouriaud O, Don A, Janssens IA, Marin G, Schulze ED (2019) Effects of forest management on biomass stocks in Romanian beech forests. For Ecosyst 6(1):19
Google Scholar
Brunner I, Bakker MR, Björk RG, Hirano Y, Lukac M, Aranda X, Börja I, Eldhuset TD, Helmisaari HS, Jourdan C, Konopka B, López BC, Miguel Pérez C, Persson H, Ostonen I (2013) Fine-root turnover rates of European forests revistited: an analysis of data from sequential coring and ingrowth cores. Plant Soil 362:357–372
CAS
Google Scholar
Burschel P, Huss J (2003) Grundriss des Waldbaus. Ulmer Verlag, Stuttgart, p 487
Google Scholar
Cain M, Lynch J, Allen MR et al (2019) Improved calculation of warming-equivalent emissions for short-lived climate pollutants. NPJ Clim Atmos Sci 2:29. https://doi.org/10.1038/s41612-019-0086-4
Article
CAS
PubMed
PubMed Central
Google Scholar
Ciais P, Schelhaas MJ, Zaehle S, Pião SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze ED, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429. https://doi.org/10.1038/ngeo333
Article
CAS
Google Scholar
Ciais P, Yao Y, Gasser T, Baccini A, Wang Y, Lauerwald R, Canadell JG (2020) Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Nat Sci Rev 8(2):nwaa145
Google Scholar
Clemmensen KE, Bahr A, Ovaslainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay RD, Wardle DA, Lindahl BD (2013) Roots and associated fungi drive long-term carbon sequestration in boreal forests. Science 339:1615–1618
CAS
PubMed
Google Scholar
Cowie AL, Berndes G, Bentsen NS et al (2021) Applying a science-based systems perspective to dispel misconceptions about climate effects of forest bioenergy. Glob Chance Biol Bioenergy 13:1210–1231
Google Scholar
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R (2020) Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol 57(1):67–76
CAS
Google Scholar
Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, Puettmann K, Nilus R, Babweteera F, Willim K, Striers M, Soto D, Boehmer HJ, Fisichelli N, Burnett M, Juday G, Stephens SL, Ammer C (2021) Global patterns and climatic controls of forest structural complexity. Nat Commun 12:519
CAS
PubMed
PubMed Central
Google Scholar
Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjöller R, Kraigher H, Matzner E, Neumann J, Plassard C (2013) The production and turnover of extrametrical Mycelium of ectomycorrhizal fungi in forest soils: rope in carbon cycling. Plant Soil 366:1–27
CAS
Google Scholar
EU (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J Eur Union 5:2009
Google Scholar
EU (2020) EU-Biodiversitätsstrategie für 2030. In: COM (2020) 380 final. EU, Brüssel
Google Scholar
Resende TC, Gibbs D, Harris N, Osipova E. (2021) World Heritage forests: Carbon sinks under pressure. UNESCO, International Union for Conservation of Nature, World Resources Institute. https://unesdoc.unesco.org/ark:/48223/pf0000379527
Favero A, Daigneault A, Sohngen B (2020) Forests: carbon sequestration, biomass energy, or both? Sci Adv 6(13):eaay6792
PubMed
PubMed Central
Google Scholar
FNR (2018) Basisdaten Bioenergie Deutschland, FNR, Gülzow, p 51
Foken T (2017) Energy and matter fluxes of a spruce forest ecosystem. Ecol Stud 229:532
Google Scholar
Forest Europe (2016) State of Europe’s Forests, Forest Europe, Madrid
Forzieri G, Girardello M, Ceccherini G, Spinoni J, Feyen L, Hartmann H, Beck PSA, Camps-Valls G, Chirici G, Mauri A, Cescatti A (2021) Emergent vulnerability to climate-driven disturbances in European forests. Nat Commun 12:1081
CAS
PubMed
PubMed Central
Google Scholar
FVA Baden-Württemberg (2018) Holznutzung und Nährstoffnachhaltigkeit –Abschlussbericht zum Projekt, Energieholzernte und stoffliche Nachhaltigkeit in Deutschland (EnNa). Berichte Freiburger Forstliche Forschung 101:375
Google Scholar
Granier A, Ceschia E, Damesin C, Dufrene E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000) The carbon balance of a young beech stand. Funct Ecol 14:312–325
Google Scholar
Grossmann M (2020) https://www.nationalpark-hainich.de/de/aktuelles/aktuelles-presse/einzelansicht/disput-um-zahlen-erlaeuterungen-zur-waldinventur-im-hainich.html
Gundersen P, Thybring EE, Nord-Larsen T, Vesterdal L, Nadelhoffer KJ, Johannsen VK (2021) Old-growth forest carbon sinks overestimated. Nature 591:E21–E23
PubMed
Google Scholar
Hainich (2012) Waldentwicklung im Nationalpark Hainich. Erforschen 3:1–166
Google Scholar
Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contribution to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146
CAS
Google Scholar
Herbst M, Mund M, Tamrakar R, Knohl A (2015) Differences in carbon uptake and water use between a managed and an unmanaged beech forest in central Germany. For Ecol Manag 355:101–108
Google Scholar
Hurteau MD, Hungate BA, Koch G (2008) Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front Ecol Environ 6(9):493–498
Google Scholar
IPCC Guidelines (2006) IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
Google Scholar
Irslinger R (2021) Fossile Emissionen vermeiden anstatt sie in Wäldern zu speichern. AFZ-DerWald 21(2021):39–42
Google Scholar
Jandl R, Spathelf P, Bolte A, Prescott CE (2019) Forest adaptation to climate change: is non-management an option? Ann For Sci 76:48
Google Scholar
Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238
Google Scholar
Knauf M, Joosten R, Frühwald A (2016) Assessing fossil fuel substitution through wood use based on long-term simulations. Carbon Manag 7(1-2):67–77
CAS
Google Scholar
Köhl M, Ehrhart HP, Knauf M (2020) A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecol Indic. 111:106057
Google Scholar
Körner C (2020) Biodiversität, Kohlenstoffkreislauf und Klimawirkung sind im Wald eng verknüpft. Forum für Wissen 2020:65–70
Google Scholar
Korpel S (1995) Die Urwälder der Westkarpaten. Gustav Fischer Verlag, Stuttgart
Google Scholar
Kramer H (1988) Wald-Wachstumslehre. Paul Parey, Hamburg, p 374
Google Scholar
Kruhlov I, Thom D, Chaskovskyy O, Keeton WS, Scheller RM (2018) Future forest landscapes of the Carpathians: vegetation and carbon dynamics under climate change. Reg Environ Chang 18:1.555–1.567
Google Scholar
Kuuluvainen T et al (2017) North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future. For Ecol Manag 385(1):140–149
Google Scholar
Leon E, Vargas R, Bullock S, Lopez E, Panosso AR, La Scala Jr N (2014) Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biol Biochem 77:12–21
CAS
Google Scholar
Lindroth A, Holst J, Heliasz M, Vestin P, Lagergren F, Biermann T, Cai Z, Mälder M (2018) Effects of low thinning on carbon dioxide fluxes in a mixed hemiboreal forest. Agric For Meteorol 262:59–70
Google Scholar
Loisel P (2020) Under the risk of destructive event, are there differences between timber income based and carbon sequestration based silviculture. For Policy Econ 120:102269
Google Scholar
Luyssaert S, Marie G, Valade A, Chen YY, Djomo SN, Ryder J, Otto J, Naudts K, Lanso AS, Ghattas J, McGrath MJ (2018) Trade-offs in using European forests to meet climate objectives. Nature 562:259
CAS
PubMed
PubMed Central
Google Scholar
Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213–215
CAS
PubMed
Google Scholar
Mantero G, Morresi D, Marzano R, Motta R, Mladenoff DJ, Garbarino M (2020) The influence of land abandonment on forest disturbance regimes: a global review. Landsc Ecol 35(12):2723–2744
Google Scholar
Mayer M, Sandén H, Rewald B, Godbold DL, Katzensteiner K (2017) Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct Ecol 31(5):1163–1172
Google Scholar
Millar CI, Stephenson NL (2015) Temperate forest health in an era of emerging megadisturbance. Science 349:823–826
CAS
PubMed
Google Scholar
Moomaw WR, Masino SA, Faison EK (2019) Intact forests in the United States: Proforestation mitigates climate change and serves the greatest good. Front For Glob Chang. 2:27. https://doi.org/10.3389/ffgc.2019.00027
Article
Google Scholar
Moore DJ, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K, Desai AR, Negron J, Monson RK (2013) Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett 16(6):731–737
PubMed
PubMed Central
Google Scholar
Moreno-Anguiano O, Carrillo-Parra A, Rutiaga-Quinones JG, Wehenkel C, Pompa-Garcia M, Marquez-Montesino F, Pintor-Ibarra LF (2021) Chemical composition of Luffa aegyptiaca Mill., Agave durangensis Gentry and Pennisetum sp. PeerJ 9:e10626
PubMed
PubMed Central
Google Scholar
Nabuurs GJ, Delacote P, Ellison D, Hanewinkel M, Hetemäki L, Lindner M (2017) By 2050 the mitigation effect of EU forests could nearly double through climate smart forestry. Forests 8:484
Google Scholar
Nave LE, Vance ED, Swanston CW et al (2010) Harvest impacts on soil carbon storage in temperate forests. For Ecol Manag 259(5):857
Google Scholar
Noormets A, Epron D, Domec JC, McNulty SG, Fox T, Sun G, King JS (2015) Effects of forest management on productivity and carbon sequestration: a review and hypothesis. For Ecol Manag 355:124–140
Google Scholar
Oren R, Werk KS, Schulze ED, Meyer J, Schneider BU, Schramel P (1988) Performance of two Picea abies (L.) Karst. stands at different stages of decline. VI. Nutrient concentration. Oecologia 77:1–162
PubMed
Google Scholar
Paul T, Kimberley MO, Beets PN (2021) Natural forests in New Zealand - a large terrestrial carbon pool in a national state of equilibrium. For Ecosyst 8:34
Google Scholar
Phillips CL, Bond-Lamberty B, Desai AR, Lavoie M, Risk D, Tang J, Todd-Brown K, Vargas R (2017) The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant Soil 413(1-2):1–25
CAS
Google Scholar
Pimentel D, Marklein A, Toth MA, Karpoff MN, Paul GS, McCormack R, Kyriazis R, Krueger T (2009) Food versus biofuels: environmental and economic costs. Hum Ecol 37(1):1–12
Google Scholar
Pretzsch H (2019) Transitioning monocultures to complex forest stands in Central Europe: principles and practice. Burleigh Dodds Science Publishing Limited, Cambridge
Google Scholar
Raymer AKP (2006) A comparison of avoided greenhouse gas emissions when using different kinds of wood energy. Biomass Bioenergy 30(7):605–617
Google Scholar
Repo A, Känkänen R, Tuovinen JP, Antikainen R, Tuomi M, Vanhala P, Liski J (2012) Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy 4(2):202–212
CAS
Google Scholar
Roe S, Streck C, Beach R, Busch J, Chapman M, Daioglou V, Deppermann A, Doelmann J et al (2020) Land-based measures to mitigate climate change: Potential and feasibility by country. Global Change Biol 27(23):6025–6058. https://doi.org/10.1111/gbc.15873
Article
Google Scholar
Roux A, Coolin A, Dhôte JF, Schmitt B (2020) Filière forêt-bois et attenuation du changement climatique: entre sequestration du carbone en forêt et développement de la buoéconomie. Verdailles, etition Quae, p 170
Google Scholar
Rüter S (2011) Projection of Net-Emissions from Harvested Wood Products in European Countries for the Period 2013-2020. Arbeitsbericht aus dem Institut für Holztechnologie und Holzbiologie:1
Saunders M, Tobin B, Black K, Gioria M, Nieuwenhuis M, Osborne BA (2012) Thinning effects on the net ecosystem carbon exchange of a Sitka spruce forest are temperature-dependent. Agric For Meteorol 157:1–10
Google Scholar
Savill PS, Evans J (2004) Thinning. In: Burley J, Evans J, Youngquist J (eds) Encyclopedia of forest science, vol 2. Elsevier, Oxford, pp 845–850
Google Scholar
Schall P, Ammer C (2013) How to quantify forest management intensity in Central European forests. Eur J For Res 132:379–396
Google Scholar
Schelhaas MJ, Nabuurs GJ, Schuck A (2013) Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biol 9:1.620–1.633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Article
Google Scholar
Schmidt M, Hanewinkel M, Kändler G, Kublin E, Kohnle U (2010) An inventory-based approach for modeling single-tree storm damage : experiences with the winter storm of 1999 in southwestern Germany. Can J For Res 40:1636–1652
Google Scholar
Schulze ED, Beck E, Buchmann N, Clemens S, Müller-Hohenstein K, Scherer Lorenzen M (2019) Plant Ecology. Springer Verlag, Heidelberg
Google Scholar
Schulze ED, Boch S, Müller J, Levick SR, Schuhmacher J (2016) Seltene und gefährdete Pflanzen wachsen im Laubwald überall. AFZ-DerWald 13(2016):35–38
Google Scholar
Schulze ED, Luyssaert S, Ciais P, Freibauer A, Jannsens IA, Soussana JF, Grace J, Levin I, Thiruchittampalam B, Heimann M, Dolman AJ, Valentini R, Bousquet P, Peylin P, Peters W, Rödenbeck C, Etiope G, Vuichard N, Wattenbach M, Nabuurs GJ, Poussi Z, Nieschulze J, Gach JH (2009) Importance of methane and nitrous oxide for Europe’s terrestrial greenhouse-gas balance. Nat Geosci 2:842–850
CAS
Google Scholar
Schulze ED, Rock J, Kroiher F, Egenolf V, Wellbrock N, Irslinger R, Bolte A, Spellmann H (2021) Klimaschutz mit Wald. BIUZ 2021(1):46–64
Google Scholar
Schulze ED, Sierra CA, Egenolff V, Woerdehoff R, Irslinger R, Baldamus C, Stupak I, Spellmann H (2020) The climate mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy 12:186–197
CAS
Google Scholar
Schulze ED- Sierra C, Egenolf V, Woerdehof R, Irslinger R, Baldamus C, Stupak I, Spellmann H (2020) Forest mamagement contributes to climate mitigation by reducing fossil fuel consumption: A response to the letter by Welle et al. (2021) GCB-Bioenergy 13:288–290, https://doi.org/10.1111/gcbb.12754
Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ (2014) Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang 4:806–810
CAS
PubMed
PubMed Central
Google Scholar
Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nat Clim Chang 7:395–402
PubMed
PubMed Central
Google Scholar
Sierra CA, Crow SE, Heimann M, Metzger H, Schulze ED (2021) The climate benefit of carbon sequestration. Biogeosciences 18:1029–1048
CAS
Google Scholar
Sjølie HK, Solberg B (2011) Greenhouse gas emission impacts of use of Norwegian wood pellets: a sensitivity analysis. Environ Sci Policy 14(8):1028–1040
Google Scholar
Söderberg C, Eckerberg K (2013) Rising policy conflicts in Europe over bioenergy and forestry. For Policy Econ 33:112–119
Google Scholar
Speckman HN, Frank JM, Bradford JB, Miles BL, Massman WJ, Parton WJ, Ryan MG (2015) Forest ecosystem respiration estimated from eddy covariance and chamber measurements under high turbulence and substantial tree mortality from bark beetles. Global Change Biol 21(2):708–721
Google Scholar
Spiegel (2020) Auf dem Holzweg. Der Spiegel 52:110
Google Scholar
Stillhard J, Hobi ML, Brang P, Brändli UB, Korol M, Pokynchereda V, Abegg M (2021) Structural changes in a primevel beech forest at the landscape scape. For Ecol Manag 504:119836
Google Scholar
Taeroe A, Mustapha WF, Stupak I, Rauland-Rasmussen K (2017) Do forests best mitigate CO2-emissions by setting them aside for maximization of carbon storage or by management for fossil fuel substitution. J Environ Manag 197:117–129
CAS
Google Scholar
Ter-Mikaelian MT, Colombo SJ, Chen J (2015) The burning question: Does forest bioenergy reduce carbon emissions? A review of common misconceptions about forest carbon accounting. J For 113(1):57–68
Google Scholar
Ter-Mikaelian MT, Colombo SJ, Lovekin D, McKechnie J, Reynolds R, Titus B, Laurin E, Chapman AM, Chen J, MacLean HL (2014) Carbon debt repayment or carbon sequestration parity? Lessons from a forest bioenergy case study in Ontario, Canada. Global Change Bioenergy 7(4):704–716
Google Scholar
Thom D, Rammer W, Garstenauer R, Seidl R (2018) Legacies of past land use have a stronger effect on forest carbon exchange than future climate change in a temperate forest landscape. Biogeosciences 15:5699–5713
CAS
Google Scholar
Thom D, Seidl R (2016) Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol Rev 91:760–781
PubMed
Google Scholar
Thüringen Forst (2020) Rechenschaftsbericht, Thüringen Forst, Erfurt, p 60
UNESCO (2021) International Union for Conservation of Nature, World Resources Institute World Heritage forests: carbon sink under pressure. ISBN 978-92-3-100480-3, 31. (https://unesdoc.unesco.org/ark:/48223/pf0000379527.locale=en)
Vass MM, Elofsson K (2016) Is forest carbon sequestration at the expense of bioenergy and forest products cost-efficient in EU climate policy to 2050? J For Econ 24:82–105
Google Scholar
Vesala T, Suni T, Rannik Ü, Keronen P, Markkanen T, Sevanto S, Grönholm T, Smolander S, Kulmala M, Ilvesniemi H, Ojansuu R, Uotila A, Levula J, Mäkelä A, Pumpanen J, Kolari P, Kulmala L, Altimir N, Beringer F, Nikinmaa E, Hari P (2005) Effect of thinning on surface fluxes in a boreal forest. Global Biogeochem Cycles 19:1–11
Google Scholar
von Carlowitz HC (1730) Sylvicultura Oeconomica. Oder Haußwirtschaftliche Nachricht und naturgemäße Anweisung zur wilden Baumzucht. Verlag Johann Friedrich Braun, Leipzig, p 248
Google Scholar
Wellbrock N, Bolte A (2019) Status and dynamics of forests in Germany. Ecological Studies 237, Springer Verlag, pp 384
Wirth C, Messier C, Bergeron Y, Frank D, Fankhänel A (2009) Old growth forest definitions: a pragmatic view. Chapter 2 in old-growth forests. Ecol Stud 207:11–33
Google Scholar
Zimová S, Dobor L, Hlásny T, Rammer W, Seidl R (2020) Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. For Ecol Manag 475:118408
Google Scholar